
PGP AUTH: USING PUBLIC KEY ENCRYPTION FOR

AUTHENTICATION ON THE WEB

by

Derek Wueppelmann

A thesis submitted to

the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of

the requirements for the degree of

MASTER OF COMPUTER SCIENCE

Human Computer Interaction

at

CARLETON UNIVERSITY

Ottawa, Ontario

September, 2015

c© Copyright by Derek Wueppelmann, 2015

Abstract

The majority of authentication systems use text passwords, as they provide a flexible

method of authenticating on a wide variety of devices. Unfortunately, having suffi-

ciently strong passwords does not protect users against phishing or offline guessing

attacks. In this thesis, we present a new authentication mechanism that uses PGP.

We iteratively designed PGP Auth, implemented it, and conducted user testing.

Users rated the software highly and indicated that they would be very likely to use

the software. They also liked the idea of having a single password to access their

accounts and appreciated the security of using PGP as an authentication system.

We believe that with a refined user interface, PGP Auth is a viable authentication

mechanism that addresses many of the security vulnerabilities of traditional text

password authentication. We also provide recommendations to aid in the development

of future versions of PGP Auth based on our results.

ii

Acknowledgements

First, I would like to thank my supervisor Sonia Chiasson. Without her hard work

an dedication this thesis would not have been possible. The advice given over the

past three years has been an invaluable asset and has been greatly appreciated. Our

meetings may have been short, but they were always informative and helpful.

I thank the members of my committee, Anil Somayaji and Anthony Whitehead for

their feedback, guidance and perspectives. I would also like to thank Kasia Muldner

for chairing the defense. To all of you, it was appreciated that you could make the

time for my defense during the first weeks of the semester.

I would also like to thank my family. My wife Julie for being so patient with

my long nights spent working on this thesis, especially nearing the end. My two

daughters who were so patient and understanding when I responded “not right now,

I’m doing school work.” to their requests. Without their patience, understanding,

and support I do not know what I would have done.

iii

Table of Contents

Abstract ii

Acknowledgements iii

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Research Challenge . 2

1.3 Contribution . 2

1.4 Thesis Outline . 3

Chapter 2 Background 4

2.1 Introduction . 4

2.2 Common Authentication Methods . 5

2.2.1 Text Based Authentication . 5

2.2.2 Other Knowledge Based Systems 10

2.2.3 Biometric Passwords . 10

2.2.4 Token and Two-Factor Passwords 12

2.2.5 Summary of Common Authentication Methods 12

2.3 Public Key Encryption for Authentication 13

2.3.1 Public Key Encryption . 13

2.3.2 Using PKE for Authentication 14

2.3.3 PGP . 15

2.3.4 Summary of PKE for Encryption 17

2.4 Device Pairing . 17

2.5 Methodological Background . 18

iv

2.5.1 Statistical Tests . 18

2.5.2 System Usability Scale . 18

2.6 Summary . 19

Chapter 3 PGP Auth - Prototype 1 20

3.1 Overview . 20

3.2 PGP Auth Accounts . 21

3.3 Protocol . 22

3.3.1 Prerequisites . 22

3.3.2 Additional HTTP Headers . 23

3.3.3 Data Transmission . 23

3.3.4 User Authentication . 24

3.4 Client UI Implementation . 28

3.4.1 Generating a PGP Auth Account 29

3.4.2 Unlocking the Private PGP Key 30

3.4.3 Creating a New Website Account 31

3.4.4 Linking Devices Together . 32

3.5 Server Implementation . 33

3.5.1 Index Page . 33

3.5.2 Login Page . 34

3.5.3 Create New Account . 36

3.5.4 Protected Page . 36

3.6 Security . 37

3.7 Summary . 39

Chapter 4 User Study for Prototype 1 40

4.1 Study Design . 40

4.2 Setup . 40

4.3 Instrumentation . 41

4.4 Procedure . 42

4.5 Participants . 44

v

4.6 Results . 45

4.6.1 Usage and Outcomes . 46

4.6.2 Timing . 47

4.6.3 Survey Results . 49

4.6.4 Interviews . 52

4.6.5 Users’ Mental Models . 53

4.7 Summary . 56

Chapter 5 PGP Auth: Prototype 2 57

5.1 Wizard Interfaces . 57

5.2 Modification: Linking Devices Together 58

5.3 Summary . 60

Chapter 6 User Study for Prototype 2 61

6.1 Study Design . 61

6.2 Participants . 61

6.3 Results . 62

6.3.1 Usage and Outcomes . 63

6.3.2 Timing . 64

6.3.3 Survey Results . 65

6.3.4 Interviews . 68

6.3.5 Users’ Mental Models . 70

6.4 Summary . 71

Chapter 7 Discussion and Conclusion 72

7.1 Summary of Results . 72

7.2 Implementation Recommendations 73

7.2.1 More Guidance . 73

7.2.2 Instructions . 74

7.2.3 PGP Key IDs are not User-Friendly 74

7.2.4 Server-Side Considerations . 75

vi

7.2.5 Recommendation Summary 75

7.3 Discussion . 75

7.4 Limitations . 77

7.5 Future Work . 77

7.6 Conclusion . 78

Bibliography 80

Appendix A PGP Auth - Information Sheet 86

A.1 About PGP Auth . 86

A.1.1 Key Benefits . 87

Appendix B Survey Questions 88

B.1 Demographic Information . 88

B.2 PGP Authentication . 90

Appendix C Interview Questions 93

Appendix D Interview Diagram 94

vii

List of Tables

Table 3.1 Additional HTTP X headers created for PGP Auth 24

Table 3.2 PGP Auth process overview . 25

Table 4.1 Outcome summary . 47

Table 4.2 Time taken to complete the given tasks. 48

Table 4.3 Results from Likert questions 50

Table 4.4 User mental model accuracy 55

Table 6.1 Outcome summary . 64

Table 6.2 Time taken to complete the given tasks. 65

Table 6.3 Results from Likert questions 67

Table 6.4 User mental model accuracy 70

viii

List of Figures

Figure 2.1 Public key encryption . 14

Figure 3.1 Successful login attempt . 26

Figure 3.2 Successful new account creation 28

Figure 3.3 Generate new PGP Auth account interface 29

Figure 3.4 PGP Auth busy working overlay 30

Figure 3.5 PGP Auth passphrase entry 31

Figure 3.6 PGP Auth create new account prompt 31

Figure 3.7 Linking devices - step 1 . 33

Figure 3.8 Linking devices - step 2 . 34

Figure 3.9 Linking devices - step 3 . 35

Figure 3.10 Public index page . 35

Figure 3.11 Authorization required page 36

Figure 3.12 Account protected page . 37

Figure 4.1 Distribution of user competency responses 45

Figure 4.2 Distribution of user habits responses 45

Figure 4.3 Distribution of user responses 49

Figure 4.4 Distribution of user SUS responses 51

Figure 4.5 Correct mental model diagram 54

Figure 4.6 Low scoring mental model diagram 55

Figure 4.7 High scoring mental model diagram 56

Figure 5.1 Linking devices - modified step 1 58

Figure 5.2 Linking devices - modified step 2 58

Figure 5.3 Linking devices - modified step 3 59

Figure 5.4 Linking devices - modified step 4 59

Figure 6.1 Distribution of user competency responses 62

Figure 6.2 Distribution of user habits responses 62

ix

Figure 6.3 Distribution of user responses 66

Figure 6.4 Distribution of user SUS responses 68

x

Chapter 1

Introduction

1.1 Motivation

The majority of authentication systems use text passwords. Password systems provide

a flexible method of authenticating on a wide variety of devices that can provide a

keyboard interface. These authentication systems are susceptible to common attacks,

making passwords problematic. Recent attacks reported in news media have shown

that password leaks and phishing are of particular concern [8, 42].

Users are commonly encouraged to generate strong passwords. However, this

has been a difficult task for several reasons. One is that users have a difficult time

determining what actually makes a secure password [60]. Another reason is that

when sites employ poor password policies, they can actually reduce the security of

the passwords used [63]. This is further compounded by the number of passwords

a user is required to remember; users have on average 7 passwords and each one is

reused on 6 different accounts [19].

Unfortunately, having sufficiently strong passwords does not protect users against

phishing attacks [4,48], nor against offline guessing attacks caused by password leaks

[42]. Well-crafted phishing attacks can not only put an individual user at risk, but

can even lead to a password leak scenario, as was experienced by RSA in 2011 [8].

In 2007, Gartner estimated that $3.2 billion was lost due to phishing attacks in the

United States [43]. A later study by Gartner estimated that the average user who

fell victim to a phishing attack lost $351, with banks and other financial institutions

covering most of that cost [49].

While many systems encrypt stored passwords, an attacker with unrestricted ac-

cess to the password hash can make repeated guesses on the password until a match

is found. This leaves all accounts open to unauthorized access after a password leak

1

2

regardless of the original password strength. In addition, since many user reuse pass-

words and usernames [19], a password leak on one system can compromise a user’s

accounts across multiple systems.

Alternative authentication mechanisms have been implemented to address these

types of issues. Two factor authentication [2,24] increases security by requiring an at-

tacker to breach two authentication mechanisms before gaining access. The usability

cost is requiring the user to have access to additional information or a device any time

they wish to access their accounts. Other authentication methods like biometrics, re-

quire specialized hardware, may not work in all circumstances, or have additional

privacy concerns.

A new method of authentication is needed to address these issues. It needs to be

secure, usable, and not require special hardware or have any privacy risks.

1.2 Research Challenge

The challenge addressed in this thesis is to design an authentication mechanism that

is resistant to password leaks, phishing, bulk guessing attacks, and offline guessing

attacks. We also want to reduce the memory burden on users and make the system

easy to use. Our selected approach is to use PGP, a public key encryption system, as

the underlying mechanism for an authentication system. Given this goal, we address

the following specific questions:

• Can PGP be used as an authentication system?

• Can key-signing be used to enable devices to share accounts?

• Are users successfully able to use this system?

1.3 Contribution

This thesis contributes the following items to the literature:

• A new PGP Auth protocol that uses PGP as a mechanism for authentication.

It uses public-key encryption to authenticate users. Using PGP’s key-signing

3

ability and web of trust, we allow multiple devices to share the same account

on a server without directly involving the server in the linking process.

• A proof-of-concept implementation demonstrating the feasibility of the protocol.

• An evaluation showing that this type of interface is usable and that users like

the concept. Improvements are still needed to address some remaining usability

issues.

We accomplish this by building a prototype that implements our protocol and

then performing user studies with the prototypes. The prototype went through one

revision to improve the interface. User satisfaction was determined using post-study

questionnaires. The usability of the interface was assessed using the industry standard

SUS scale and measuring user performance with the prototype.

1.4 Thesis Outline

The rest of this thesis is organized in the following way: Chapter 2 outlines the

background research with respect to passwords and other authentication systems.

We also discuss public key encryption systems and how they have been used for

authentication. We describe attacks against password systems and how public key

encryption systems can provide an extra layer of protection against these attacks.

In chapter 3, we describe our proposed PGP Auth protocol. We also outline the

prototype client and server software created for the user study. Chapter 4 details the

user study performed using the first prototype. We analyze the data gathered and

evaluate our users’ experience with the system. Based on these results, we updated

the prototype as discussed in chapter 5. Chapter 6 provides the results from our

second user study. We conclude with chapter 7, which includes a discussion of the

results from both surveys, a description of future work, and a conclusion to the thesis.

Chapter 2

Background

2.1 Introduction

Since computers have had user accounts, it seems there has always been an issue with

passwords. At least as far back as 1979, researchers were looking for ways to improve

password use and security [46]. For Morris et al. it was simply trying to encrypt the

list of passwords used on a system so that this information would not be given out

inadvertently.

Authentication systems today consist of two components; user authentication and

authorization. User authentication provides a mechanism to verify the user’s identity

to the system. Authorization grants access to features of a system. There are cur-

rently three basic types of authentication systems. Knowledge based systems require

you to confirm something you know (e.g., text based passwords, graphical passwords,

gesture based systems). Another variety relies on something you have with you (e.g.,

token keys, one-time passwords sent via SMS). There are also biometric passwords

that rely on something you are or do (e.g., fingerprint, retinal scan, movements).

Each of these types of passwords have their own benefits and drawbacks. Research

has assessed security concerns with all forms of authentication as well as proposals for

possible solutions to known attacks. Many of the attacks that have been demonstrated

are purely theoretical [34, 37, 52, 67]. Others have had actual implementations [8, 42,

62]. Solutions often offer alternatives to existing authentication systems [18, 24, 26,

32,41] or propose additional tools to combat the potential security risks [44, 57,67].

Advances in cryptography allow for the possibility of confirming a user’s identity

by what they are able to decrypt [5, 26]. PGP [12] is one implementation where a

user generates two types of keys; one private key and one public. The public key can

be made available to anybody; when used to encrypt a message, only the user that

has access to the private key can decrypt it. This presents the possibility of using

4

5

this as a method of user authentication and authorization.

2.2 Common Authentication Methods

There are several different kinds of authentication methods currently being used. The

following sections outline some these methods.

2.2.1 Text Based Authentication

Most websites use a form of username and a text based password to grant access.

Herley et al. [29] discussed many reasons why it is likely to stay that way for the

foreseeable future as well. Although sites like Google [24] offer alternatives, they still

also provide the traditional username and password interface.

Problems

Part of the problem with text based passwords is the fact that they are so common.

In 2011, Hayashi et al. [27] estimated that an average user had about 11 accounts,

with values ranging from 3 to 16. With this number of accounts, users tend to reuse

their passwords. Florencio et al.’s 2007 study [19] found that users used an average

of 7 passwords over a period of two months and that the average password was used

for 6 separate accounts. The authors [19] also estimated that around 4.28% of Yahoo!

users forgot their passwords during a two month period.

The average user enters a password about 75 times per day, 75% of those for

logging into various web sites [27]. With so many interactions, having something

that is memorable to the user is essential. However, having users select their own

password may leave them open to security risks. Ur et al. [60] found that some users

are unable to determine what makes a strong password. The passwords they chose as

high security ones were actually easier to guess than those they thought offered lower

security.

Many sites employ a password policy to aid users in selecting a more secure pass-

word. Komanduri et al. [35] explain that a well-crafted password policy will aid in

6

increasing the entropy of a password. However, some policies actually hinder the pro-

cess of choosing a better password [1]. This is further affected by some users’ belief

that a password is more secure just by adhering to any password policy [60].

With users having a large number of accounts, password reuse is common. In

their sample, Florencio et al. found that on average a password was reused on 6

sites [19]. More secure passwords were reused less often, on an average of 4 sites.

If users also used the same username on these sites, a potential attacker could gain

access to multiple accounts at the same time if only one password was obtained. The

attacker would still need to determine which sites the password was reused on.

Attacks

Florencio et al. [21] outlined the main attacks that face text based passwords. These

were phishing, keylogging, brute-force attacks (offline and online), bulk guessing at-

tacks, and special knowledge attacks.

Phishing: A phishing attack aims to solicit your password credentials or other

details from you by earning your trust. These types of social engineering attacks

usually consist of a carefully crafted email designed to look like a respected company

requesting information from a user. The user trusts the contents of the email due to

the perceived authenticity of the sender, then follows the instructions and provides

the desired information to the phisher. In 2007, Florencio et al. [19] estimated that

around 0.4% of users would fall victim to a phishing attack each year.

This can be a highly successful attack, especially when coupled with mining data

from social media websites for targeted attacks. In 2011, RSA Security’s internal staff

were successfully phished leading to the master keys of the RSA SecureID tokens being

stolen [8]. These types of attacks are particularly difficult to prevent since the user is

deceived into providing information to a false authority. Many solutions rely on two-

factor authentication to prevent phishing, discussed below in section 2.2.4. Badra et

al. [4] described a way of using a Pre Shared Key (PSK) to lower the risk of phishing

sites.

In a physical version of phishing, Orgill et al. [48] simulated an attack on user’s

7

accounts by using social engineering. In this scenario, the researcher posed as an

auditor and asked employees questions, including asking for their username and pass-

word. The researcher was also able to gain access to the building after hours using

similar techniques and find passwords written down at employees’ desks.

Keylogging: Keyloggers capture a user’s input to a system and then provide

that data to the owner of the application at a later time. There are many different

kinds of keyloggers, some are very sophisticated and capture screen-shots and other

information in addition to keystrokes [62]. While legitimate keyloggers do exist1,

many are installed via viruses and malware to maliciously obtain user data. Herley

et al. [28] suggests switching focus between the input field and a non-input field while

typing random letters to make it difficult for a keylogger to obtain your password.

However, this seems a bit impractical to perform as a standard operating practice.

Brute-Force: A brute force attack is performed by sequentially attempting all

possible password combinations to gain access to an account. There are two types

of brute force attacks. In an online attack, the passwords are tried to login to the

actual account in real time. In an offline attack, the hashed version of the password is

known. In this case, the attacker will compare the results of hashing their password

guesses against the known value offline. If the two values match, then the password

has been guessed.

Online brute force attacks should be infeasible. With a basic three-strikes policy

that locks an account for a short period of time, an online attack would take 10 years

to guess 1% of the password space of a 6-digit PIN [21]. This leaves protecting against

unauthorized access to the stored passwords to prevent offline attacks. Hashing the

passwords stored on the system is an important counter measure in case the passwords

are accessed maliciously.

As early as 1979, research into passwords and security was being conducted. Mor-

ris et al. [46] looked at how long it would take to brute force passwords of various

lengths on the existing hardware. For example. they found that it took 112 days for

a 5-character password containing the 95 printable ASCII characters. In the same

1http://www.keylogger.org/ has a listing of keylogger software with feature breakdowns [33]

8

paper, Morris et al. also noted that the password file was stored as a plain text file,

so any user with access to that file could gain access to any account they wished.

Bulk Guessing: In a bulk guessing attack, an attacker uses a large array of

computers to make online login attempts to many accounts using the same password

guess. Based on users’ password habits, an attacker can craft the guess based on

standard password generation rules and likely obtain access to a subset of accounts.

Simple passwords are more susceptible to this type of attack. The more accounts

attacked, the greater the chance that an attacker will obtain access to a subset of

accounts.

After analyzing over 70 million passwords from Yahoo! Bonneau [10] concluded

that an attacker could guess 1% of account passwords within 10 guesses in an online

bulk guessing attack using high probability passwords. In the offline case, Bonneau’s

analysis indicated that to break half of the accounts, an attacker would only need to

expend the effort required to brute-force a 20-bit password with an optimized guessing

technique.

Special Knowledge: Special knowledge attacks are similar to bulk guessing at-

tacks. An attacker reduces the number of password guesses by crafting their guesses

to coincide with knowledge of a user. This could include phone numbers, relatives’

names, birth dates, favorite animals, and many other types of information. While

this may help to gain access to a specific user’s account, Bonneau [10] suggests that

crafting guesses to a group of users did not yield a much better success rate than

using a generalized guessing strategy.

Solutions

A number of solutions have been proposed and implemented to prevent these types

of attacks. With the exception of encrypting the passwords held on the server, these

all concentrate on increasing password strength to reduce guess-ability and increasing

the time required to perform an offline attack. These solutions can be grouped into

server side and client side tools.

9

Server Tools: Of the server-side tools, password policies have been widely imple-

mented by sites. However, Adams et al. [1] and Komanduri et al. [35] showed that

some policies actually decrease the security of user passwords. Sometimes, policies

can actually increase the guess-ability of the passwords used [63]. In addition, the

more a site has a requirement to be usable, the less likely it is to enforce a strong

password policy [20]. This leaves users with potentially weaker passwords on popular

websites, putting them at risk for bulk guessing attacks.

Honeywords stores a set of false positive results for a given password [32]. When

one of those false positives is used, a notification or alarm is triggered to prevent

infiltration. This seems overly complex, and most system that want to protect against

online guessing attacks employ either a delay between each password attempt, or a

longer waiting period after a defined number of failed attempts, as suggested by

Florencio [21].

Another method intended to improve password strength is strength meters. These

rely on metrics to determine whether the password selected during password creation

is sufficiently strong. Egelman et al. [17] performed a study which showed that when

meters were present, users selected stronger passwords. Password meters can suffer

the same problems as password creation policies [13].

Client Tools: Many security specialists encourage the use of a password manager.

These are software tools that store all of a user’s passwords and usually locks them

with a single master password. The idea is that users can craft or generate hard

to remember, but highly secure, passwords and then have the password manager

remember them. The potential weak point is the password manager software which

must be resistant to attack. For example, Zhao et al. [67] showed that many browser-

based password managers are susceptible to theoretical exploits.

Password managers also suffer from portability issues. If the passwords are all

saved on one device, you need access to that device in order to obtain your passwords.

Some solutions, like LastPass [38], use a cloud based solution to store the passwords

in a centrally accessible location. However, as was seen in June of 2015, the stored

passwords may be vulnerable if the provider is compromised [42]. McCarney et al.

[44] looked to solve this issue by using a cell phone as a digital wallet to store the

10

passwords. This required the use of both a cell phone and a desktop to access a

shared set of passwords. If either device was compromised, the passwords were still

protected.

Other work has been done to improve users’ abilities to select good passwords

[36, 55]. Shay et al. worked on validating the wisdom that longer passwords without

any other restrictions can be more secure. They found that while some of these policies

do yield stronger passwords, cracking programs can also easily find common words

and strings in longer passwords. Mnemonic phrase-based passwords were analyzed

for their effectiveness by Kuo et al.. They showed that their user generated mnemonic

passwords had better protection than a control group of passwords, but that cracking

applications could be improved to target mnemonic passwords.

2.2.2 Other Knowledge Based Systems

The recent dominance of smartphone technology has made touch interfaces com-

monplace. As such, many phones now include touch-based authentication systems;

Android’s graphical password is just one example. While users generally like these

types of interfaces [61], there are known and easy to perform attacks against them,

in particular due to their small password space [3].

Traditional desktop systems have other methods of authenticating as well. Graph-

ical passwords [7] offer one such method. Stobert et al. created a password manager

that uses a graphical password to generate passwords for websites, bridging graphical

passwords to be used in place of a text based password [57].

With bendable displays on the horizon, a new form of password entry will be

possible. In her work, Maqsood [41] looked at the usability of bend passwords. After

a bit of a learning curve, users we able to remember their bend passwords with about

the same recall as PINs. This type of interface requires highly customized hardware

at the moment.

2.2.3 Biometric Passwords

Biometric passwords use some physical characteristic to identify you to a system [31].

The system analyzes the aspect presented and compares it against a pattern stored

11

in a database to determine if there is a match. As Jain et al. [31] describe, different

biometric aspects can be used depending on the security level required. Items such

as gait could be used for low security systems, whereas fingerprint or retinal scans

could be used for higher-security applications.

Saevanee et al. [53] looked at using passive biometric analysis of users’ interaction

with their cell phones to be used a continuous authentication system. Users’ SMS

text messages were analyzed for their keystroke behaviour as well as the linguistic

contents of the messages. Saevanee et al. concluded that their technique offered a

reasonable method to authenticate a user with an overall low error rate. In order

to authenticate a user, a large enough sample of data is required to compare against

known patterns. This would make authenticating on demand potentially problematic.

As early as 1997, there has been concerns about using biometric data [65]. This

revolves around giving up immutable information that personally identifies you to

another party. One possible solution was put forward by Bhargav-Spantzel et al. [6].

The authors propose a technique called zero-knowledge proof to prove that the system

holds a private key without actually providing the key. A biometric component is then

used by the user to prove the possession of the private key. The iPhone fingerprint

scanner behaves in much the same way [15].

When the iPhone 5s launched, it had a fingerprint scanner that could be used

to unlock the device. Within days of the release Reiger [52] was able to successfully

perform an attack on the device to gain access. In addition, there are cases where the

fingerprint scanner may not be able to recognize the user, so a backup password or

PIN entry method is provided. This leaves the device open to the same attacks that

a PIN or password protected device has on its own [15].

Biometrics rely on the perceived immutability of the personal characteristics being

used for identification. Research by Mehrotra et al. [45] suggests that, at least for irises

over a 10 year period, this may not be the case. In addition, many biometric systems

require additional hardware (e.g., fingerprint scanner, camera, motion sensors). This

reduces the number of scenarios where biometrics could be used.

12

2.2.4 Token and Two-Factor Passwords

Another method of authentication requires the user to have something with them to

aid in the authentication process. This can either come in the form of a token that

generates a PIN number, as is the case with RSA Security’s SecureID solutions [66],

or a secondary device which stores, receives, or generates the PIN to be used.

One example used by Google [24] sends the user a text message with a PIN to

be entered after they have performed the initial login process. This requires that the

user setup two factor authentication ahead of time and has access to their device for

each subsequent login attempt.

BeamAuth [2] also performs two-factor authentication by using a bookmark stored

in the browser to aid in the authentication process. The bookmark uses the anchor

tag component to store the second authentication factor and JavaScript is used to

provide the anchor value. The site will only grant access if the username, password,

and anchor value are all correct. Users are required to have access to the bookmark

in order to access the site.

2.2.5 Summary of Common Authentication Methods

Today, text based passwords are the most commonly used method of providing user

authentication. These are open to some common attacks; phishing, bulk-guessing,

and password leaks. Solutions that have been provided aim to improve the strength

of users passwords with varying degrees of success.

Other types of authentication exist and are being used today. While these forms

of authentication can provide a higher level of security than passwords they may not

be possible to use in all situations. Some of these require specialized hardware not

available on all devices. Other forms of authentication require the user to have access

to a separate component to complete the authentication process, which the user may

not have access to at all times.

13

2.3 Public Key Encryption for Authentication

Encryption is a method of encoding messages so that it can be read only by entities

that know how to decode it [23]. Without additional work, a third party would not

be able to understand the contents of an intercepted message. In order to decode

the message, a key is required. This key can come in many forms, but in all cases it

provides the necessary information to take the encoded message and translate it back

into the original message sent. While it can be possible to decode a message without

the key, a strong encryption scheme will require a infeasible amount of computational

resources to decode.

2.3.1 Public Key Encryption

In 1976, Diffie and Hellman [16] described public key encryption (PKE), also known as

asymmetric encryption, as a method to securely communicate between two parties.

After generating a sufficiently large random number K, encrypting and decrypting

functions are generated using K as the basis. These two functions operate by acting

as opposites to each other, if a message is encoded with one function it can only be

decoded with the other. The decrypting function would then be stored as a private

key and the encrypting function would be given as the public key. Figure 2.1 shows

how the keys are used to transmit a message between two users.

Messages can be sent confidentially to a user using their public key. In order to

decode the message, a user would need access to the private key. A third party who

intercepted the message would not be able to read the message being transmitted.

In their paper, Diffie and Hellman [16] outlined how PKE can be used to authen-

ticate a user. The user can send a message encrypted using their private key, then

anyone can verify the sender by using the sender’s public key to decrypt the data.

The other way to authenticate a user would be to send them a message using their

public key; if the message is decoded and reported successfully then you know the

user has access to the private key.

14

Figure 2.1: Diagram of how public key encryption works [25].

2.3.2 Using PKE for Authentication

Using PKE as an authentication system has been proposed by Halevi et al. [26]. In

their system, the client encrypts their password using the server’s public key before

transmission. The server decrypts the password using the server’s private key, then

verifies the password before allowing access. They showed that an authentication

attempt using public-key encryption would be resistant to server compromises and to

offline guessing attacks (given a suitably strong encryption mechanism). An attacker

would require access to both the set of passwords stored and the private key.

PKE systems also offer the ability to digitally sign messages instead of just en-

crypting them [23]. In this case, the message sent also includes an extra piece of

information containing the digital signature. The signature is generated using the

15

private key and the message. The signature can be verified by using the associated

public key to authenticate the signature and the message it is attached to.

One implementation provided by the FIDO Alliance [5] called the Universal Au-

thentication Framework (UAF) provides another method of authentication using

PKE. In the UAF specification, users hold a set of private keys in a local key store

that are used to communicate with a remote website. When a user accesses a new

website that supports UAF, the user’s local system generates a new key pair and

stores the private key in the local key store. Once authenticated, the remote sever

can verify the client by challenging them to return a message digitally signed with the

private key. Users unlock their local key store with regular user authentication; the

specification encourages authentication through biometrics, but a PIN or password

could also be used. The UAF specification does not mention how accessing a single

account from multiple devices would work and does not go into other uses of PKE.

Recently, Farrell et al. [18] proposed an experimental authentication protocol using

PKE, as an alternative to existing authentication protocols performed over HTTP. In

their scheme, the client generates a new key-pair for each website visited and digitally

signs data provided by the server. If the authentication is successful, then the server

continues with normal operation, asking for additional client credentials. Specifics on

the client and server implementations are not offered.

2.3.3 PGP

PGP (Pretty Good Privacy) is a PKE scheme created in 1991 with the most recent

OpenPGP RFC update occurring in 2007 [12]. PGP provides the ability to digitally

sign other users’ public keys; this is called key signing. Digital signatures enable a

recipient to verify that the sender is legitimate and that the info has not be altered

in route. PGP uses digital signatures to enable user A (i.e., the signer) to vouch

for user B (i.e., the signee) by saying that they trust that B truly owns their key.

Each digital signature is based on components of the signee’s public key, including

the key ID. This data is then encrypted using the signer’s private key to form the

digital signature. The digital signature is added to the signee’s public key structure.

A third user can validate a signee’s key by using the signer’s public key to decrypt the

16

digital signature and validate the information against the signee’s public key. When

keys are signed by multiple users, this begins to form a web of trust [12]. This is a

decentralized mechanism to validate key authenticity. A user can validate if a key is

authentic if any of the signatures found on that key originate from keys that the user

currently trusts.

When PGP generates a key, it produces a structure that holds several components

[12]. These include: an identifier typically holding the owner’s email address and

name, the public key, the private key, a set of signatures, and a list of other users’

public keys, also known as a key-chain. The set of signatures is initially empty, but

can contain as many signatures as desired. Signatures are added through the process

of key signing.

PGP is currently used for many purposes. In addition to encrypting messages sent

between users, there are many different implementations of software that integrate

PGP into email applications [40,51]. Some instant messaging solutions also use PGP

to encrypt their communications [22].

Usability

Historically, PGP has been difficult to use when used to encrypt, decrypt, and digitally

sign email messages [56, 64]. In 1999, Whitten et al. [64] showed that users had a

difficult time using the provided email interface for PGP and made several critical

errors when trying to send messages which would compromise security. Sheng et

al. [56] attempted a similar study 7 years later with similar result.

Security

PGP is among the most secure methods of transmitting data between two parties.

However, the strength of PGP’s security is related to the size of the key used. In PGP,

the size of the key is measured in bits; the more bits used in the key, the larger the key

size. In 2010, Kleinjung et al. [34] were successful in cracking a 768-bit key. This took

the equivalent of 2000 years of computing time from 2.2GHz system. They concluded

that a 1024-bit key would be about 1000 times harder to factor (i.e., determine the

initial key used to generate the public and private keys). They recommended that

17

1024-bit keys should be phased out and replaced with higher bit keys because it may

be possible to factor a key of this size by 2020.

Public key servers are systems that have been set up so that users can upload

their public keys. These servers contain a large database of public keys and allow

users to search for other users’ keys through a number of criteria, including the key

ID, email address, and name. A key ID is generated by taking a portion of the public

key value as a 16-digit hexadecimal string. This acts as a unique identifier for the

key, along with the user ID (typically the user’s name and email address), key-length,

and fingerprint (a hashed version of the public key and other data). Key IDs can be

presented as a string of 8 or 16 hexadecimal digits. The 8-digit key ID is known as the

short key and consist of the last 8-digits of the full 16-digit key ID. A known weakness

exists, whereby an attacker could generate a key yielding an arbitrary 8-digit key [37].

This could allow an attacker to impersonate another user’s key by having the same

8-digit key ID. It is therefore recommended that users use the full 16-digit key when

performing searches.

2.3.4 Summary of PKE for Encryption

PKE systems like PGP provide a method of securely authenticating users without

the transmitting passwords. Existing systems that use PKE as an authentication

system rely on a single server key or a new key pair generated for each client-sever

relationship. None of the existing methods make use of digital signatures to aid in

the authentication process.

2.4 Device Pairing

When two previously unknown devices need to directly communicate with each other,

a process is required to initiate the communication channel. Once this initialization

has been completed, it can be remembered for future use. This process is known

as pairing and is used, for example, by Bluetooth [9] devices. During pairing, one

Bluetooth device presents the user with a code that needs to be verified by entering

on the second device. Once correctly entered, the pairing process completes and the

two devices can communicate in the future without user interaction.

18

A pairing system was also used in previous versions of FireFox Sync [58]. This

used a server as an intermediary to communicate a secret that could be verified on

the second device. Once the second device verified the secret presented in the first

browser, the pairing was complete. Both browsers could then sync and share FireFox

profile data across the two devices.

2.5 Methodological Background

When analyzing data obtained during a user study, various techniques can be em-

ployed. Statistical tests are used to determine if perceived differences in data sets

are statistically relevant. The usability of an interface can be assessed through ques-

tionnaires, interviews, observation, and through performance measures collected by

instrumented prototypes. We discuss the statistical tests used and the usability scale

used in assessment.

2.5.1 Statistical Tests

The Wilcoxon RankSum test, also known as a Wilcoxon-Mann-Whitney test or a

Mann-Whitney U test, is a non-parametric test used to evaluate if two groups of

ranked data are statistically different [39]. In order to use this test, the two data sets

should come from different user groups. This test also works well on data that is not

normally distributed.

2.5.2 System Usability Scale

The System Usability Scale (SUS) was developed as a simple standardized method

to assess the usability of a user interface [11]. It is comprised of ten 5-point Likert-

scale questions ranging from strongly agree to strongly disagree. The results are

tabulated so that the end score is a value between 1 and 100. It is strongly emphasized

that the score is not a percentage; instead, the score is to be used to compare the

interface against other interfaces. To aid in this, Sauro [54] took the results from 1000

interfaces, sorted the results and turns a SUS score into a percentile rank against his

dataset. Using this scale, Sauro provides a method to convert the score into a letter

19

grade. A score of 68 is considered to be average (50th percentile) and receives an ‘C’,

a score of 80.3 or higher is in the top 10% of websites and receives a letter grade of

‘A’.

2.6 Summary

Authentication is part of using computers in everyday life. The most common form

of authentication is text based passwords. These are pervasive not just because they

have been used for so long, but also because they are the most easily implemented

form of authentication. Users are obtaining more accounts that require passwords and

so are faced with memorability and reuse issues related to having so many different

passwords.

Attackers employ a number of different methods, such as Phishing, brute-force

attacks, guessing attacks, and compromising servers. Simple text based passwords

make many of these attacks easier to accomplish than more complex passwords.

Public-key encryption may offer a method that still maintains the flexibility of

passwords while removing many of the risks. A public-key system would be resistant

to compromises of the server, avoid issues with online and offline guessing attacks,

be resistant to brute force attacks, prevent phishing attacks, and be resistant to key

logging software. This is the goal of the FIDO Alliance with their UAF specification.

However, their specification uses a password manager to hold all of the keys associated

with the remote entities.

Key signing can also play a role in the authentication process. Signing a key places

a stamp of approval on that key. If the approval was reciprocal, a system could trust

that both parties agree to certain predefined actions, such as sharing accounts.

Chapter 3

PGP Auth - Prototype 1

3.1 Overview

We propose PGP Auth as a new method of authenticating to a website. This method

uses PGP (Pretty Good Privacy) keys to act as a user account and verification system.

This allows users to authorize and identify themselves to a remote website without

having to provide a username or a password. PGP Auth has been designed to remove

many of the complications found when using PGP.

With PGP Auth, each user’s devices has its own privately-held authentication

key as well as a publicly-available authentication key. The private key is kept secret

on the device and is never transmitted or seen by any remote website. When a user

attempts to login to a remote website, PGP Auth only provides the public key. The

remote website will then validate the key against a publicly available version of this

key. Using the device’s public key, it will encode the information needed to complete

the authentication process in such a way that only the device’s privately held key can

decode it. When a device successfully decodes the information, access is granted to

the website.

For added protection, the device’s private key is locked using a password of the

user’s choosing. This password is only used to unlock the private key and the password

never leaves the device. This helps prevent against password theft and password

guessing, since an attacker needs physical access to the device. Once unlocked, the

device’s private key will remain unlocked until the web browser is closed or the devices

is turned off. This means that an attacker would not only need to know the password,

but also have a copy of the private key in order to gain access to the user’s website

accounts.

PGP Auth allows users to link all their devices together so that they can seamlessly

access all their website accounts regardless of the device they are using. Linking two

20

21

devices requires a user to authorize each pair of devices against each other. For

example, if a user wanted his or her phone and desktop computer to share the same

set of accounts, the user would first authorize the phone from the computer, and then

later, authorize the computer from the phone. While this authorization process may

seem a little complicated, it is a one time process that ensures the user has control of

both devices and prevents a third party impersonating the user. Subsequent devices

would follow the same process with one of the previously authorized devices, forming

a chain.

An explanation of how PGP Auth uses PGP to provide an account for users is

provided in section 3.2. The general protocol devised for PGP Auth is explained in

section 3.3. Section 3.4 describes the browser extension prototype that was created

and used in the user study. Finally, section 3.5, gives a description of the server side

implementation used for the user study. The implementations are examples of how

to implement the protocol; other implementations are also possible.

3.2 PGP Auth Accounts

A separate PGP Auth account is generated for each of a user’s devices. The account

consists of three components stored in a single PGP key:

• Email address: Used as the PGP Auth user ID.

• Passphrase: Used to lock the private key.

• Key-pair: Generated as a standard PGP key-pair

Two PGP Auth accounts are linked together by a reciprocal signing of compatible

keys. Compatible keys are keys that share the same user ID value. Each one will sign

the other’s public key and re-upload it to a common key server. Later, a linkage can

be verified by obtaining both public keys from a key server and validating that each

key has signed the other.

When performing authentication actions with a remote system, only the PGP

public key needs to be transmitted. While a client application will always contain

both the public and private keys, it may not have the most recent signing information.

22

For this reason, anytime linkages need to be checked, they should always be checked

against keys pulled from a key server.

3.3 Protocol

Our proposed authentication method uses two components, a browser extension and

a compliant website running a server side application. A website that supports PGP

Auth provides additional HTTP headers that specify the resources required for au-

thenticating using PGP Auth. The client side detects these headers and begins the

authentication process. We considered security during our protocol design but PGP

Auth has not been subjected to a thorough security analysis. Although beyond the

scope of this thesis, security analysis should be done before deploying our protocol.

Instead of authenticating to the server using a traditional username and password,

the authentication begins when the client provides their public key. The server vali-

dates that the key matches an existing account and encrypts the session cookie to be

used when accessing the site using the given public key. The client decrypts the ses-

sion cookie returned by the server and sets the local browser cookie to the decrypted

value. Subsequent requests to the server will then be able to use this cookie value to

validate the session so that additional authentication handshakes are not required.

Devices can be linked together so that they can share the same account information

by using PGP key signing. When two keys are cross signed, each key signs the other,

creating a link between the two accounts. The server can validate that the current

key attempting to login has been linked with a key that already has an account in

the system. Once the validation has occurred, the server can continue with the login

process and grant access to the account associated with the linked key. This linking

process allows for daisy chaining as well so that you do not need a master key to sign

all other keys.

3.3.1 Prerequisites

In order for PGP Auth to be implemented correctly, the following prerequisites are

required:

23

• Both the client (browser extension) and the server must have their own PGP

key-pairs.

• Both the client and the server must be able to encrypt and decrypt data using

their private keys as well as any given public key.

• The client must be able to intercept HTTP headers while a page is being loaded.

• The client must be able to redirect the browser to a different content page as

needed based on the content headers received.

• The client has to be able to display prompts to the user while a page is being

loaded in the browser.

3.3.2 Additional HTTP Headers

A client that supports PGP Auth will look for certain additional custom HTTP

headers when a page is loaded. These headers are included as X headers, which are

not part of an existing standard set of headers, but are allowed to be included as part

of the HTTP protocol. Table 3.1 describes the content of these headers. When the

correct headers are found, the client starts the PGP Auth process. Paths given in the

headers are appended to the current domain name being access to create a complete

URI.

3.3.3 Data Transmission

All encryption is done using PGP (Pretty Good Privacy). The client and server both

generate their own public-private key-pair, which is used in encrypting and decrypting

data. When data is sent either to or from the server, it will always be encrypted using

the recipient’s public key. Since only the associated private key can decrypt the data,

the sender knows only the recipient can obtain the data and respond correctly. The

transmission is done over standard HTTP or HTTPS protocols depending on the

server’s configuration.

24

HTTP Header Description
X-PGP-AUTH-SERVER-PUB-KEY The path to the server’s PGP public key.

(e.g. /path/to/private key.pub)
X-PGP-AUTH-POST-PATH The path where data should be posted using

HTTP POST to complete the current action
(login or new account creation). (e.g. /login)

X-PGP-AUTH-POST-VAR The name of the post parameter used in the
HTTP POST. (e.g. pub key)

X-PGP-AUTH-CREATE-PATH The path to access the account creation page.
(e.g. /new account)

X-PGP-AUTH-COOKIE-VALUE The JSON object key name which holds the
session cookie value (e.g. auth session).

X-PGP-AUTH-COOKIE The name of the cookie that stores the ses-
sion key.

Table 3.1: Additional HTTP X headers created for PGP Auth

3.3.4 User Authentication

Table 3.2 provides an overview of the entire authentication process. An interaction

diagram detailing a successful login attempt is shown in Figure 3.1. Figure 3.2 shows

an interaction diagram detailing the successful account creation process.

Once the client has detected that the current web page supports PGP Auth, the

authentication process begins automatically (Table 3.2, step 1 & 2). The initial step

is for the client to obtain the public key of the server. It is obtained by accessing the

path given in the X-PGP-AUTH-SERVER-PUB-KEY header on the current domain

(Table 3.2, step 3). The client obtains an armored version of the key; this means it

is in plain text, so the client will decode the key into its binary form. This avoids

any character set transmission issues. The armored version of the key is 7-bit safe,

meaning that it will be transmitted and received by the client without going through

any character encoding or decoding.

With the server’s public key, the client sends the server an encrypted copy of its

armored PGP Auth public key (Table 3.2, step 4). The client posts the data to the

path given in the X-PGP-AUTH-POST-PATH header using the post parameter name

from the X-PGP-AUTH-POST-VAR header. To give the user a seamless experience,

the client should use the HTTP POST method in an AJAX call to prevent added

25

Step Client Server
1. Client requests page.
2. Server returns a page with additional

PGP Auth Headers.
3. Client sees headers, starts authen-

tication process by downloading the
server’s PGP Public key.

4. Client encrypts client’s PGP Auth pub-
lic key using server’s PGP public key
and posts to server.

5. Server receives POSTed data and
decodes encrypted public key using
server’s PGP private key.

6. Server uses the public key ID to look up
an existing user account on the system.

7. If no account is found, server searches
for cross signed keys. Server checks for
associated accounts for all cross signed
keys.

8. Server prepares session data to be sent
to client in JSON format if an account
was found. Session data is encrypted
using the client’s public key. If no user
was found, server returns a 403 Autho-
rization Required status.

9. Client receives status and content from
server.

10. On success, client decrypts the content
of the page and uses the information
to set the browser cookie and redirect
to the desired page. On a 403 failure,
client shows a message about signing up
for a new account. On other failures,
client shows an error message.

Table 3.2: PGP Auth process overview

26

Figure 3.1: Interaction diagram showing a successful login attempt

pages from being displayed in the browser.

The server decrypts the encrypted POST parameter using the server’s private

PGP key (Table 3.2, step 5). The resulting key is decoded from its armored version

into its binary format. The server then obtains the key ID from the given key. This

key ID is used to look up an associated account in the server’s list of users (Table

3.2, step 6). If a user is not found with a matching key ID, the server returns a

403 (Authorization Required) response and the authentication process stops (Table

3.2, step 8). If a successful match is made, then the user is granted access to the

corresponding account.

Optionally, a server may allow cross linked keys to access accounts held on the

system (Table 3.2, step 7). In this case, the server goes through the list of signatures

for the given public key. For each signature found, the public key of that signature

is downloaded from a public key server. The downloaded key’s set of signatures is

27

searched to see if it has been signed by the key given in the POST data. If a match

is found, then the corresponding user is identified. A user is not likely to have more

than a dozen cross-signed keys so this process should not take too long to process.

Identified cross signed keys can be kept for daisy chaining. The server repeats this

process for every cross signed key. If any key along the chain matches a user account,

then the server may grant access for the account.

When a matching user account is found, the server generates a new session for

that user (Table 3.2, step 8). The server responds using a JSON formatted data

structure with two components. The first is the session ID, accessed using the JSON

attribute name found in the X-PGP-AUTH-COOKIE-VALUE header. The second

component, accessed using the redirect url JSON attribute name, holds the URL

to where the client should redirect after setting the cookie. The entire JSON data

structure is encrypted using the client’s public key.

The client must interpret the server’s response. (Table 3.2, step 9). If the client

receives a 403 HTTP status code (authorization required), the client informs the

user that an account was not found on the server and prompts the user to create

one. To create an account, the client redirects the browser to the path found in the

X-PGP-AUTH-CREATE-PATH header. The client is finished processing.

If the client receives a 200 HTTP status code (success) then it decrypts the con-

tents of the page using the client’s private PGP key to obtain the JSON encoded

session information (Table 3.2, step 10). From this, the client obtains the session ID

from the X-PGP-AUTH-COOKIE-VALUE header. The client sets a browser cookie

using the name found in the X-PGP-AUTH-COOKIE header and the session ID as

the value. Finally, the client redirects to the redirect url from the decoded JSON

object. The client is finished processing.

If the client receives an HTTP status code other than 403 or 200, it issues an

error. This might occur if the key cannot be decoded or any unforeseen occurrence

happens during the authentication process.

28

Figure 3.2: Interaction diagram showing a successful new account creation

3.4 Client UI Implementation

The client UI (User Interface) created for the user study provides all the basic func-

tionality required to support PGP Auth. We built interface as a Chrome extension

using JavaScript and HTML. The UI facilitates generating a new PGP Auth key and

linking two devices together. These were designed with the intention that users could

use the interface without prior knowledge of PGP Auth or PGP in general. Help

documentation was provided. Figures 3.3 to 3.9 illustrate the features of the user

interface.

29

3.4.1 Generating a PGP Auth Account

Generating a new PGP Auth key-pair is done by accessing the Key Settings tab (see

Figure 3.3). Initially, the interface displays help documentation describing how to

generate the key. Three input fields and a generate button are available. The input

elements are the user ID (email address) and passphrase. The passphrase requires

duplicate entry to validate that the user did not make a typo. In this implementation,

any passphrase is allowed, including a single character, although stricter password

rules could be enforced.

Figure 3.3: The client interface to generate a new PGP Auth user account in the
browser.

After a user clicks on the Generate Key button, a overlay is added to the screen

indicating that it is generating the key (see Figure 3.4). This lets the user know that

the system is busy processing the request as generating a key can take a minute on

some slower systems.

30

Figure 3.4: When generating a key, the interface displays an overlay indicating that
it is busy working. This includes a “spinner” graphic.

3.4.2 Unlocking the Private PGP Key

In order to authenticate to a website or link devices together, a user must unlock

their private key using the password prompt (see Figure 3.5). If the passphrase is

correct, the key is unlocked and stored for the remainder of the browser session. If

a match was not found then the user is notified and asked to re-enter the password.

A user is given three attempts to unlock their private key before the UI closes the

passphrase window and issues an error. In our prototype, the user could try again

immediately. However, a production implementation may introduce a waiting period,

a lockout period, or a recovery process to prevent a brute force attack on the local

system.

31

Figure 3.5: The passphrase prompt appears when the PGP Auth client needs to
unlock the user’s private key

3.4.3 Creating a New Website Account

In the event that a user does not have an account for the website, the PGP Auth

extension will prompt the user to create one (see Figure 3.6). A user can elect to

create a new account by clicking on the OK button, or canceling the process. If a user

elects to create an account, the client will direct the user’s browser to the account

creation page found in the HTTP header data. Otherwise, it stops processing and

the original, non-protected page requested by the browser is displayed to the user.

Figure 3.6: The prompt shown to a user when they currently do not have an account
on the website. Clicking on OK takes the user to the account creation page.

32

3.4.4 Linking Devices Together

To facilitate the linking of two devices, the PGP Auth extension has a separate tab

interface for this process. It consists of a three step process that needs to be completed

on both devices.

• Step 1: Access the Link Devices tab

Figure 3.7 shows an example of this interface. Help instructions explain how

the process works. To aid in key verification, the user’s PGP key ID is colour

coded and broken into 4 character segments at the top of this interface. The key

ID is visible throughout the signing process. The Start Signing Wizard button

is used to start the signing process.

• Step 2: Select the key to link with

The system fetches all of the compatible keys from a public key server and

presents them to the user (see Figure 3.8). The instructions inform the user

that the key ID should first be verified against the ID value found on the other

device before signing the keys. Keys that have already been signed are shown in

a separate section. The user can select the keys they wish to sign from the list of

unsigned keys, allowing multiple devices to be linked at the same time, provided

the user has them all on hand to verify the matching key IDs. Users start the

signing process by clicking on the Sign Selected Keys button. Each selected key

is signed and uploaded to the public key server. An overlay indicates that the

signing progress is underway.

• Step 3: Signing completed

Once all keys are signed, the user is informed that signing has completed (see

Figure 3.9). Instructions remind the user this process needs to be done on both

devices to complete the link. The process can be repeated to sign additional

keys by clicking the Sign Additional Keys button.

33

Figure 3.7: The first step of the linking devices process.

3.5 Server Implementation

A very basic website was created using Perl that supports all the functionality required

for PGP Auth. Four pages represent the types of pages that would be found on a

typical website with both public and account-restricted content. These consist of

a public index page, a login page, a new account creation page, and an account-

protected content page. These pages were created for the user study to demonstrate

PGP Auth’s functionality. A real implementation would include actual protected

content.

3.5.1 Index Page

The index page is a publicly accessible page that presents the user with a link to log

in to the site (see Figure 3.10). Users first visit this page as a means of entry into the

protected content. As this page is publicly accessible and does not provide any PGP

Auth functionality, it is accessible without the PGP Auth extension installed. Users

access the protected content by clicking on the Sign-In or Create New Account link.

34

Figure 3.8: The second step of the linking devices process: The user selects which
key IDs to sign.

3.5.2 Login Page

When a browser without a valid session attempts to access protected content, it is

redirected to the login page. This page provides the additional HTTP headers that

trigger the extension to begin the PGP Auth authentication process. To accommodate

browsers without the PGP Auth extension, or users with trouble authenticating, the

login page displays information about the PGP Auth login process (see Figure 3.11).

During the login process, this page may be visible in the user’s browser. When the

user’s PGP Auth key is unlocked and the system has negotiated a successful login,

a valid session is created and the user will be redirected to the protected content

automatically. If a user happens to access the login page directly or is redirected to

35

Figure 3.9: The third step of the linking devices process: The user is informed that
the linking was successful and that they need to complete this process on the other
device(s).

Figure 3.10: The publicly accessible index page of the PGP Auth test website.

the login page, as long as the browser has a valid session, it will be redirected to the

originally requested content or a default protected content page.

36

Figure 3.11: The page displayed when authorization is required.

This website supports cross linked keys. When a user logs in with a PGP Auth

key that does not directly map to an account, the linked keys will be checked for valid

accounts. If a match is found, they are granted access to the cross signed account.

This happens seamlessly on the server by looking up the key data on a public key

server.

3.5.3 Create New Account

When a user creates a new account they are directed to the account creation page. The

account creation page generates a new account entry in the server’s database using the

client’s public PGP key and then redirects to the protected content page. The email

address is also extracted from the public PGP key to be associated with the account.

Other websites may want to capture additional user information before generating

an account, however for this test website we included only the core requirements for

PGP Auth.

3.5.4 Protected Page

A successfully authenticated user is redirected to the protected page (see Figure

3.12). This page gives some basic information about the current account, including

37

Figure 3.12: The account protected page. This page shows some basic information
about the currently logged in account.

the account’s public PGP key ID. If a user is accessing this page using a cross signed

key, the key ID of the device that created the account is shown. On a real deployed

site, the protected content would be shown.

3.6 Security

PGP Auth is designed to prevent a user’s password from being compromised on a

remote website. This authentication method does not store a password remotely;

a passphrase is instead associated with the locally stored private key of a device.

Remote websites and scripts loaded by remote websites do not have access to the

private key or the passphrase used.

The authentication occurs as a transaction using encryption. We chose to use

PGP as it offers a very high level of encryption that is difficult to crack [50]. The

effectiveness of this encryption is directly related to the length of the key used. Klien-

jung et al. [34] were able to successfully factor a 768-bit RSA key in 2009; this is where

the private-key is derived using an encoded message and the public-key. This factor-

ing effort used the equivalent of 2000 years of computing time for a standard 2009

desktop system. Based on the work by Klienjung et al., we set the default key to be

38

2048-bit; this should prevent factoring attacks for the foreseeable future.

While the authentication token is a public item, the actual session information is

sent via an encrypted channel. This would prevent a man-in-the-middle attack as the

encoded contents would need to be decrypted using the intended device’s private key.

Both parties rely on the ability of only the recipient being able to decode the contents

of the messages transmitted as the basis of the authentication and authorization.

Sharing accounts across devices relies on a reciprocal key signing from both de-

vices. The server checks that both keys have signed one another and uses this infor-

mation to grant access to a related key. This is open to social engineering attacks,

where an attacker could get a user to inadvertently sign the key for their device. The

aim of our interface was the reduce this risk so that users would not fall victim to this

type of attack. A mechanism for revoking the key or signing should be implemented

in the event that the user chose the wrong key, or no longer wants to have the devices

linked.

There is a chance of a local attack if the client’s browser is compromised and

the decrypted session ID is sent to an attacker. This is possible if the communica-

tion between client and server is over HTTP and the browser transmits the cookie

information in the clear, as opposed to using HTTPS. There is, however, no new

risk here over standard session cookies. Due to this, it is strongly recommended to

use HTTPS for the transmission protocol to reduce man-in-the-middle attacks. The

possibility also exists to complete the entire data transaction using PGP encrypted

packets instead of using HTTPS. The advantage of PGP packets is that a constant

authentication system could be achieved; the downside is that a larger overhead is

placed on performing the encryption. It is important to note that a local attack would

need to gain access to both the private key and the passphrase to pose a threat.

Unlike other types of authentication, PGP Auth is not susceptible to many com-

mon attacks. Guessing attacks against a user’s web accounts are not possible as the

password is never sent and guessing the private-key is computationally hard. Phish-

ing attacks would have to be reworked to get the user to sign a new key. Interfaces

should make it clear that validating the keys is important and should only be done

for devices the user controls. Shoulder surfing is not an issue as the attacker would

39

need both the passphrase and the private-key; having the passphrase on its own does

not provide the attacker any information to gain access to the user’s accounts. If,

however, an attacker were to gain access to the device, or the private-key and the

passphrase, they would gain access to all of the user’s accounts that use PGP Auth.

3.7 Summary

These two components, the browser extension and the server implementation, provide

a working example of PGP Auth. It is possible to use the browser extension to create

a new PGP Auth account on multiple devices and link them together. With these

accounts setup, a user can access a website running the server implementation and

create or log in to an account. With two devices linked together, a user can access

accounts that were created using a different device. Authentication is done without

having to provide a password to a remote website, while still allowing authorization

and authentication checks to prevent unauthorized access.

Chapter 4

User Study for Prototype 1

4.1 Study Design

With the prototype built, we wanted to determine how users would interact with the

software. Were users able to navigate the user interface successfully and perform all

the actions required to create a new auth account, log into a remote websites, link

two devices together, and use the linked devices to access their existing accounts?

During all of these tasks, would users perform actions that compromise the security

of their accounts? Would a user’s mental model of the software aid in their usage of

the software? Finally, would users like the software and want to use it in the future?

We obtained clearance from Carleton’s Research Ethics board for a lab study

using one-on-one sessions lasting 30 to 45 minutes. Each session consisted of four

parts:

• Read a one page information sheet on PGP Auth.

• Complete a set of tasks using two laptops with the PGP Auth extension.

• Answer an online survey.

• Participate in a short interview session.

4.2 Setup

The two laptops used for this study were MacBook Pros. Laptop 1 had a 13-inch

display and Laptop 2 had a 15-inch display. They both had version 43 of the Google

Chrome web browser and the PGP Auth browser extension installed. When a user

was presented with a laptop, it had two tabs open. One tab held a web page with

links to the websites being used for the study, the other tab held the PGP Auth

40

41

options page. The PGP Auth options page was active and the Key Settings tab was

visible. Users began the first task on the 13-inch MacBook.

The one page PGP Auth description is provided in Appendix A. It was designed

as a general information sheet to introduce users to the benefits of PGP Auth and

give a high level overview of the system and how it works. Users did not need to

remember everything on the page to use the system.

Prior to the study, we setup user IDs (email addresses). For each user ID, a PGP

Auth account was created and stored on the private key server set up for the test.

This extra key simulates an attacker trying to gain access to a user’s accounts, since

it was not generated by the participant. If a user selected this key to link with their

device it would represent a critical error in the process. Each user was given a user

ID to use for the duration of the study. The user ID also links the user’s interview

and online questionnaire responses to the timing data captured during their session.

Two testing websites were created for the study. Both websites ran the software

described in section 3.5 and differed in the logos displayed on every page and the

colour schemes used. Website 1 had the logo text of “Test Website 1” in black text

on a light blue background. Website 2 had the logo text of “Test Website 2” in

black text on a light green background. Each website had its own PGP key-pair and

separate PostgreSQL databases to hold user accounts.

4.3 Instrumentation

The PGP Auth interface was instrumented to record timing information when users

took certain actions. This allowed us to see how long it took users to enter passwords,

log in to the website, create a new account, and link the two devices together, as well

as how many password attempts were needed. At the end of each session, the timing

data was stored server-side in a separate delimited file containing timestamps and

actions. The file was linked to the user ID.

42

4.4 Procedure

Users were welcomed to the testing location and asked to complete the consent form.

Once the consent form was completed, we explained how the rest of the study was

going to proceed: read a one page information sheet on PGP Auth, complete a

short set of tasks on the two laptop computers provided, complete an online survey

questionnaire, and then complete a short five to ten minute interview session.

When users finished reading the PGP Auth information sheet, we gave them a user

ID for the duration of the study. We told the users that passwords and passphrases

would not be recorded and that they could use whatever password they wished. We

asked users to complete the following 7 tasks:

• Task 1: Create PGP Auth Account on Laptop 1

Using Laptop 1, we asked the user to create a new PGP Auth user account (See

section 3.4.1 for details).

• Task 2: Create an Account on Website 1 Using Laptop 1

We directed users to the tab that held the links to web pages used in the

study and indicated which link they should click to access the testing website.

Once there, users determined how to create the website account themselves (See

section 3.4.3 for details).

• Task 3: Create an Account on Website 2 Using Laptop 1

Users were directed to Website 2 and asked to create the second account.

The second website account creation process did not require entering in their

passphrase.

• Task 4: Create PGP Auth Account on Laptop 2

Users were instructed to create a new PGP Auth account on the second laptop.

• Task 5: Link Laptop 1 and Laptop 2

With the account created, we asked users to link both laptops together without

guidance from the experimenter (See section 3.4.4 for details).

43

• Task 6: Access Account on Website 1 Using Laptop 2

With the two laptops linked together, we asked users to log into Website 1 from

Laptop 2. Passphrase entry would not be required during this task.

• Task 7: Access Account on Website 2 Using Laptop 2

Finally we asked users to log in to Website 2 using Laptop 2. No password was

required.

During the tasks, we monitored the user’s actions and noted their success and any

problems encountered. We decided on 5 different levels of success to be applied to

each task. If a user was struggling with the task, we would aid them by providing

small hints only after a few minutes of them attempting the task on their own. If,

even after a few hints, the user was still unable to perform the task, we provided as

much instruction as needed to get them on to the next task. Each time a hint or

additional help was provided, this was noted. Each task had 5 possible outcomes:

• Completed: The user successfully completed the task without any help.

• Completed With Help: The user required a little bit of help. Small hints

were given (e.g.,“You need to complete the process on the second laptop”, when

users thought they were finished linking the devices together.)

• Completed With Errors: The user made an error during the task that re-

quired the experimenter to intervene in order to reverse the mistake. This never

occurred during our study.

• Completed With Critical Errors: The user made an error which would

expose them to a security problem (e.g., if the user were to sign all of the keys

presented during the linking process, this would be considered a critical error).

• Failed: The user was unable to complete the task, even with help from the

experimenter. This never occurred during our study.

After completing the tasks, users filled out an online questionnaire (see appendix

B). If users had questions about the questionnaire, the experimenter provided clar-

ification. The questionnaire contained four sections. First, we asked some general

44

demographic information questions. This was followed by questions pertaining to the

user’s password usage habits; these consisted of simple numeric entry, multiple choice,

or 5-point Likert-scale questions. We then asked users to rate their experience with

PGP Auth, using 5-point Likert-scale questions. Finally, we included the System

Usability Scale (SUS) questions [11, 54]. The SUS questions are a quick and reliable

tool used to determine the usability of interfaces.

We concluded with a short interview session. The interview session consisted of

7 main questions and one optional question (see appendix C). This included asking

users to draw a picture showing their understanding of how the system worked. The

session was audio recorded, and a video of the users’ hands was taken to see the

drawings as users explained their mental model of the system. We also wanted to

get feedback from the user with suggested improvements to the system or problems

they encountered during the study. The optional question was asked if users made

a critical error during the study so that additional information could be obtained on

how to make the interface better for future users.

At the end of the interview, users were thanked for their time and compensated

with $10. The experimenter answered any remaining questions the user had.

4.5 Participants

We recruited a total of 12 participants for the user study using the first prototype.

Participants were recruited on campus using a combination of posters and existing

mailing lists. Our participants ages ranged from 20 to 63 years of age with an average

age of 29. There was an even split of men and woman (6 men, 6 women) with

the overall majority (75%) of participants being students. Most of our participants

indicated they had 11-15 online accounts requiring passwords (7 users). Another 3

indicated they had between 5 and 10 accounts. One user responded that they had

more than 21 accounts. Participants reported spending on average of 6.17 hours a day

on a computer, with a standard deviation of 3.1. In addition, 75% of users reported

using a single password for all accounts, 17% had a couple of passwords, and one user

indicated they had one password per account.

Participants were asked a number of questions pertaining to their self described

45

Figure 4.1: Distribution of user responses to competency questions. 1 = expert, 5 =
no knowledge.

Figure 4.2: Distribution of user responses to password habits questions. 1 = always,
5 = never

competency with computers and security habits, Figure 4.1 summarizes their re-

sponses. Users rated themselves somewhat competent with computers (Q05), choos-

ing a score of either 2 or 3. When asked about their technical competence (Q06) with

security most users chose a score of 3. For both questions, 1 indicates more expertise.

We asked how often users thought about security and memorability when choosing

their passwords; responses are available in Figure 4.2. For security (Q10), the average

score across users was 2.58 (SD = 1.04). For memorability (Q11), 10 users chose 1

(always). We asked how often they use a password manager (Q12), and using the

same scale, most users indicated never (7 users).

4.6 Results

We analyzed the data gathered from our study to determine users’ satisfaction with

the software. We also evaluated users’ ability to successfully accomplish the tasks, the

software’s usability based on user feedback, and the amount of time required by users

to accomplish tasks. In addition, we looked at whether users’ mental models of how

46

the software worked affected their ability to use the software successfully. Finally,

we collected suggestions from users about how the software could be improved for a

future prototype.

Partway through the study, logins during Task 2 started exhibiting a bug. The

system would unlock the key, but the server would not return the correct encrypted

session data, denying access to the system. When this occurred, the experimenter

manually got the user past this point and to the successful login screen. Despite

debugging, the problem could not be traced.

To accommodate this in the timing data, we eliminated usage data between when

the user successfully unlocked their key until we received a valid session from the server

(which should happen almost instantly in a functioning system). In our results, we

report both sets of data: the actual unmodified value and the adjusted login times.

Note that this only occurred occasionally for Task 2 and nowhere else.

4.6.1 Usage and Outcomes

For each task, we noted the outcome according to the criteria described in section

4.4. We analyzed the notes taken during the study to see if there were any common

elements for the types of errors seen.

Of the 12 users, we found 6 users made a critical error on Task 5 when performing

the requested actions. There was one additional user that needed a prompt to com-

plete the linking process on the second laptop (Task 5) in order to continue. None of

the users required significant help to use the system. Those that required prompting

only needed guidance once or twice, and those instances are noted.

During the study some users required help in order to proceed. Two users asked

some basic questions such as “What can my password be?” and “Can I use the same

password on both laptops?”. In such cases, the experimenter answered the questions

as simply as possible so the user could continue. In two other cases, users came across

minor bugs that required the experimenter to intervene to bypass the issue and get

the user back on track. Finally, one user needed to be prompted to complete the

linking process on the second laptop in order to proceed (Task 5).

Even though all users completed all the tasks, there were 6 instances where users

47

Task Item C
o
m

p
le

te
d

w
it

h
H

e
lp

w
it

h
E

rr
o
rs

w
it

h
C

ri
ti

ca
l

E
rr

o
rs

F
a
il
e
d

1 Gen. PGP Auth Acct. 1 10 2 0 0 0
2 Create Website Account 1 12 0 0 0 0
3 Create Website Account 2 12 0 0 0 0
4 Gen. PGP Auth Acct. 2 11 1 0 0 0
5 Link PGP Auth Accounts 5 1 0 6 0
6 Login Website Account 1 12 0 0 0 0
7 Login Website Account 2 12 0 0 0 0

Table 4.1: Summary of outcomes for each task for 12 participants.

completed a task with critical errors. Table 4.1 shows a summary of each task and

the outcomes as described in section 4.4. In five of the critical errors cases, the user

selected both keys presented during the signing process instead of the specific one for

the other laptop. Four of those users made the same critical error on both laptops.

The remaining user signed both keys anyways, but did so one key at a time. The

sixth critical error occurred when a user sequentially signed both keys presented on

Laptop 1, but completed the process on Laptop 2 without any errors.

The number of participants that signed both keys rather than one in Task 5 was

higher than expected. We explore why this happened in the interview and survey

portions of the study to gain insight into how to modify the interface.

4.6.2 Timing

We collected the timing information from each laptop for each participant and then

analyzed the data. We calculated the amount of time it took each participant to

complete the tasks as well as several sub components to each task. The results of

these calculations can be seen in Table 4.2.

We found that while it took users on average the same amount of time to generate

48

Task Item Mean Median Std. Dev.
1 Gen. PGP Auth Acct. 1 11.29s 11.93s 3.41s

2
a. Unlock Key Laptop 1 13.52s 7.37s 15.38s
b. Create Website Account 1 (unmodified) 29.13s 22.87s 16.20s
c. Create Website Account 1 (adjusted) 20.53s 15.97s 18.05s

3 Create Website Account 2 4.41s 3.92s 2.17s
4 Gen. PGP Auth Acct. 2 10.65s 9.38s 4.86s

5

a. Sign Key Laptop 1 45.55s 37.26s 21.75s
b. Unlock Key Laptop 2 8.74s 6.83s 4.54s
c. Sign Key Laptop 2 21.72s 9.36s 40.47s
d. Total Signing Process 69.55s 67.12s 21.46s

6 Login Website Account 1 1.94s 1.47s 1.23s
7 Login Website Account 2 0.66s 0.61s 0.20s

Table 4.2: Time taken to complete the given tasks.

a PGP Auth account on both laptops (Task 1 and 4), there appears to be a learning

curve for users when it comes to other features. For example, users took twice as long

to perform the Sign Key Laptop 1 (Task 5a) process (M = 45.55s), than performing

the same steps on Laptop 2 (Task 5c) (M = 21.72s).

When creating an account from Laptop 1 on Website 1 (Task 2), users were

required to unlock their password first before the account would be created and

access granted. The entire account creation process took users an average of 20.53s

to complete, considering the adjusted value due to the bug described in section 4.6.

When users created their account on Website 2 (Task 3), it took them an average of

4.41s. This is the expected time a user would take to create an account in real world

usage, once they had setup PGP Auth and unlocked their key for the browser session.

The login process from Laptop 2 (Task 6 and 7) was done after the linking process

was completed (Task 5). This left the private key unlocked so the user was not

required to enter a password to access either the first or second test websites. These

login times reflect real world usage of accessing an account, once PGP Auth is setup

and the user entered in their passphrase once for the browser session. Login times

were quick, averaging 1.94s on Website 1 (Task 6) and 0.66s on Website 2 (Task 7).

49

Figure 4.3: Distribution of user responses to Likert questions. Questions marked
with an * indicate the Likert values were inverted for reporting purposes. 1 = most
positive, 5 = most negative.

4.6.3 Survey Results

After performing the required tasks, users filled out a post-test questionnaire. We first

present the results of users’ perceptions of the software. We then describe and present

the evaluation of the SUS questions. The average Likert scores for the perception and

SUS questions are shown in Table 4.3. Two participants did not respond to question

16 and one did not respond to question 17. The questionnaire can be found in

Appendix B. In all cases, 1 is most positive and 5 is most negative. Responses to

negatively worded questions are inverted for reporting.

Figure 4.3 shows the distribution of responses to the perception questions. Users

reported that using the PGP Auth system was quite easy; they almost universally

found that creating a website account while using PGP Auth was easy (Q14), with

10 users rating it a 1. Even with the difficulties encountered with the linking process,

many users still found this process relatively easy (Q15), with 7 users rating it a 2.

Users also felt that the system was secure. When asked how likely an attacker

could gain access to their accounts (Q16), an average score of 1.7 was given. They

also scored the likelihood that their password was shared with a remote website (Q17)

50

Category # Question Mean Std. Dev.

Competency
5* Regarding computers 2.50 0.50
6* Regarding security 3.42 0.86

Security

10 Think about security 2.58 1.04
11 Think about memorability 1.17 0.37
12 Use a password manager 4.33 0.94
16 Attacker gain access 1.70 0.64
17 Password shared 1.64 0.77

Usability

13 Easy to setup 1.67 0.75
14 Easy to create 1.17 0.37
15 Easy to link 1.75 0.60
18* Likely to use 2.00 0.82
19* Overall experience 1.42 0.64
30* Choose stronger password 1.17 0.37

System Usability Scale

20 Use frequently 1.92 0.64
21* Unnecessarily complex 1.83 1.14
22 Easy to use 1.58 0.64
23* Need support 1.83 0.90
24 Well integrated 1.75 0.83
25* Too much inconsistency 1.25 0.43
26 People would learn quickly 1.75 0.83
27* Cumbersome to use 1.50 0.65
28 Confident using 1.67 0.75
29* Learn a lot to use 1.75 0.83

Table 4.3: Results from 5 point Likert questions. 1 = most positive, 5 = most
negative. Items marked with an * indicate the Likert scales were inverted for reporting
purposes.

51

Figure 4.4: Distribution of user responses to SUS questions. Questions marked with
an * indicate the Likert values were inverted for reporting purposes.

a value of 1.64.

When asked about their overall satisfaction with the software, users also reported

favorable results. Users scored the likelihood of using the software (Q18) an average

of 2. Users rated their overall experience (Q19) with the system an average of 1.42.

The users were also asked several Likert-scale questions to obtain the SUS ranking

(see Figure 4.4). The SUS ranking required computing a score based on answers

to questions 20-29. We calculated the SUS score using the method described by

Brooke [11]. The score was subtracted from 5 for even numbered questions (positively

worded questions) and 1 was subtracted from questions with odd numbers (negatively

worded questions). The computed values were tabulated and multiplied by 4, yielding

a number between 1 and 100. The ranking value is not a percentage, but can be used

to analyze the usability of an interface relative to other interfaces [11].

When compiled, PGP Auth received an average rating of 82.82 (SD = 14.06).

Sauro [54] determined that a SUS score above 80.3 yields an equivalent letter grade

of an A, meaning that the software is among the top 10% of software. Based on PGP

Auth’ score, users perceived the software very usable and would be very likely to use

it in the future.

52

4.6.4 Interviews

During the interview process, we assessed users’ answers to see their level of under-

standing of the system. We compared their responses about how PGP Auth worked

with the actual workings of the system. We then compiled the feedback about what

worked well and what they felt could have been improved. Their responses were clas-

sified based on categories that emerged organically from the interview sessions. We

used these results to come up with modifications that could be made to the proto-

type to improve on it. Users’ responses to interview questions were also used to aid

in understand the mental model diagrams produced.

We found several misconceptions held by users. Two users believed that the two

laptops communicated with each other in order to allow access to the websites. One

user indicated that Website 1 communicated to Website 2 to determine if the user

had access to Website 1. Two users mistakenly believed that the user’s passwords

were sent to the remote websites. Many users expressed a general confusion about

the relationship between keys and passwords.

As reported in the survey section, users were generally pleased with the software.

When asked what they liked most about the system six users liked the idea of needing

to remember only one password. Four users thought the system was quick and easy

to use. Finally, two users liked the overall security of the system.

When we asked what users disliked about the system, we got a variety of answers

addressing both usability and security. The only common answer was to have the UI

look more polished, or have a “friendlier” interface. Some users gave specific items to

work on, such as using Yes/No buttons instead of Cancel/OK when asking to create

an account, including clearer messaging when the linking process is complete, and

avoiding complicated and technical terms for security. One user was concerned about

having their phone linked to their account: “It would be easier to access your account

if your devices was stolen and [someone] knew your password. So, for that reason I

might choose to have my phone unlinked.” (User14). Similar sentiments were raised

by another user about leaving a computer unlocked.

It was clear that many users were confused about how the linking process worked.

53

When asked, we got several confused responses: “I didn’t understand from the be-

ginning” (User04), “I still don’t understand” (User08), and “I guess I don’t really

understand how it links the two.” (User10). When we asked what they found con-

fusing about the software directly, User13 indicated that simpler terms were needed

and that diagrams to explain things might help.

In preparation for a second prototype, we asked users for suggestions on what

could be done to improve the software. The main suggestions were directed towards

the linking process: make it similar to BlueTooth linking, create a wizard (step-by-

step process) for linking, and have a one-step linking process instead of having to

link from both devices. One user wanted an option to disable it after having had a

previous bad experience with another password manager extension.

Of these suggestions, the BlueTooth and step-by-step process options are similar.

This could be achieved by adding a better guided process with clearer instructions

at each step. It would, however, require removing the ability to sign multiple keys

at the same time. A one-step process is not possible since keys need to be signed

on both devices in order to create the appropriate relationship between the devices.

By default, all extensions in chrome can be disabled by the user; therefore disabling

PGP Auth is already possible through of the browser interface.

For those users with critical errors, we explained the error and then asked what the

software could do to help prevent the issue in the future. One user again mentioned

making the linking process more like the BlueTooth process where you obtain a value

from one device and verify it on the second. Two users indicated that during the

linking process, it would help to label the displayed keys. UI improvements were

suggested by one user to highlight the important items. One user blamed themselves

for the issues because they went through the UI too quickly without reading anything.

4.6.5 Users’ Mental Models

Users were asked to explain their understanding of how PGP Auth authenticated to

websites and how it linked two devices. After answering these questions, the user was

asked to draw a diagram of how the system works on a sheet of paper. The sheet had

printed blocks for Laptop 1, Laptop 2, Website 1, and Website 2 (see Appendix D).

54

Figure 4.5: The correct, simplified mental model diagram used for comparison. Items
in blue were provided on the user’s sheet.

Some users had keen insights into how PGP Auth worked; one user responded

“Like one door to enter all the other rooms.” (User07), when describing the password

used to lock the private key. Many users found it difficult to draw their understanding

of how PGP Auth works; “I never knew that this would be so hard.” (User02), and

“Essentially there is going to be arrows everywhere” (User12).

To assess users’ mental models, we generated our own simplified version of the

diagram (see Figure 4.5). Expecting users to understand the interaction between the

extension and websites and a key server seemed unreasonable, so we did not include

that in diagram. We added 11 components to our diagram from the original (see

Appendix D). A scoring scheme was devised: 1 point added for each correct item, 0.5

points subtracted for incorrect items, and 1 point added for mentioning interaction

with a key server. Scores below 3.5 points were considered to have a low accuracy (see

Figure 4.6 for an example), scores between 3 and 7 were considered medium accuracy,

55

Figure 4.6: An example of a low scoring mental model, receiving a score of 1.5.

and scores 7 and above were considered to have a high degree of accuracy (see Figure

4.7 for an example). Users were encouraged to think aloud while they were drawing

their diagram, any additional items that they mentioned during this process, but did

not write down, were also taken into account and added or subtracted from scores as

if written down. Verbal descriptions were used in place of drawn pictures in cases of

conflicts. Table 4.4 has the results of this analysis.

We also informally explored whether users who made critical errors during task

Accuracy Total Critical Errors
High 4 1
Medium 5 4
Low 3 1

Table 4.4: Distribution of users’ mental model accuracy scores. The number of users
that had critical errors is also provided.

56

Figure 4.7: An example of a high scoring mental model, receiving a score of 9.

completion had lower understanding of how PGP Auth Works. Table 4.4 summarized

the number of users making critical errors with each scoring category. Instead, we

see that most critical errors were made by users with medium accuracy scores.

4.7 Summary

Users found the PGP Auth system easy to use and would likely use it in the future.

More users committed a critical error during the signing process than anticipated.

After analyzing the performance data and users’ comments, we saw improved perfor-

mance after first use, with the second key signing being much faster than the first. A

guided approach to signing keys would likely solve many of the critical errors observed.

Chapter 5

PGP Auth: Prototype 2

While conducting our initial user study we found that a significant number of partic-

ipants were making the same critical error. Users were selecting all of the keys from

the list provided and proceeding to sign those keys. This would leave them open to

an attacker gaining access to their accounts.

Users understood the mistake made when they were informed that they had signed

an incorrect key. Many users, when prompted for possible solutions, offered up a

similar idea. Instead of letting users select all of the keys they wanted to sign at the

same time, the interface should guide them through the signing process for one key

at a time.

Some users also were unsure of when the signing process was complete. They either

asked if they were done, or paused as they tried to determine the system’s status.

Without a clear indication of completion, users may continue to sign additional keys.

Given the obvious user interface problems, we decided to stop the user study after

12 participants and modify the interface to better aid the user in the signing process.

We completed a second user study to determine if the changes to the interface aided

in the proper use of the system.

5.1 Wizard Interfaces

A wizard interface is designed to guide a user through a set of steps to achieve a

goal. These are used when there are a large number of steps that need to be followed,

or the task could be complicated for users to accomplish [59]. Users are provided

short simple tasks one at a time that when completed together in the prescribed

order achieve their goal. This allows users to accomplish tasks that would otherwise

require them to have a much deeper understanding of the software.

We chose to a wizard interface as a replacement to our original linking process.

57

58

We felt that providing users with only one action at a time and providing instructions

at every step of the process would reduce the number of critical errors.

5.2 Modification: Linking Devices Together

The entire Link Devices tab was modified to provide a different work-flow for signing

keys. The new process consists of four steps which need to be completed on both

devices. A wizard-like interface style was chosen to help guide users into selecting the

correct key.

Figure 5.1: The first step of the modified linking devices process.

Figure 5.2: The second step of the modified linking devices process: The user selects
which key ID to sign.

• Step 1: Access the Link Devices tab

The updated content is shown in Figure 5.1. The help instructions were removed

and the user is informed to start the signing process by clicking on the Start

Signing Wizard button. The local Key ID remains visible at the top of the tab.

59

Figure 5.3: The third step of the modified linking devices process: A visual confir-
mation is made of the selected key ID to sign.

Figure 5.4: The fourth step of the modified linking devices process: Once signing has
completed on this device, the user is informed that the process needs to be completed
on the other device.

• Step 2: Select the key to link with

A list of all keys that have not been signed are presented to the user in an

overlay (see Figure 5.2). The user selects the key they wish to sign and clicks

the Select Key button to proceed. Only one key can be chosen at a time.

• Step 3: Verify the selected key

The selected key ID is shown to the user with instructions to verify this key

against the key on the other device (see Figure 5.3). If the keys do not match,

60

the user can cancel the process. Otherwise, the user confirms and signs the key

using the Confirm button.

• Step 4: Signing complete

The user is explicitly informed that the key has been signed. If the user still

needs to complete the signing process from the second device, the confirmation

text indicates this, as shown in Figure 5.4. Alternatively if both devices are

now linked together, the user is informed that the linking process is complete.

5.3 Summary

These changes were made to aid the user navigate the two main issues seen in the first

round of participants to our user study: signing incorrect keys, and not knowing when

the signing process was complete. This modified process helps users find the correct

key to sign. The system also now provides more feedback about the system status

and progress towards successful completion of the signing process on both devices.

Chapter 6

User Study for Prototype 2

6.1 Study Design

After the updates were made to the prototype, we conducted a second study. We used

the same procedure in order to determine if the changes made affected the outcomes.

The prototype still contained the same instrumentation.

6.2 Participants

We recruited a total of 16 participants for the user study of the second prototype.

Participants were recruited on campus using a combination of posters and existing

mailing lists. Our participants’ ages ranged from 20 to 42 years with an average

age of 26.2 years. We had more women (62%) participants than men and 69% of

participants were students.

Seven of our participants indicated they had 5-10 online accounts requiring pass-

words. Another 4 indicated they had between 11 and 15 accounts. One user had more

than 21 accounts. Participants reported spending on average of 8.25 hours a day on

a computer, with a standard deviation of 3.17. In addition, 81% of users reported

using a single password for all accounts. No users used a unique password for each

account.

Participants were asked a number of questions pertaining to their self described

competency with computers and security habits; responses are summarized in Figure

6.1. Users rated their technical competence with computers (Q05) an average score

of 2.06 (Md = 2, SD = 0.75). Users rated their technical competence with security

(Q06) an average score of 3.19 (Md = 3, SD = 0.63). In both cases, 1 indicates higher

expertise.

We asked how often users thought about security and memorability when choosing

61

62

Figure 6.1: Distribution of user responses to competency questions. 1 = expert, 5 =
no knowledge.

Figure 6.2: Distribution of user responses to password habits questions. 1 = always,
5 = never

their passwords. Figure 6.2 summarizes their responses. For security (Q10), the

average score was 2.06 (Md = 2, SD = 0.66). For memorability (Q11), the average

value was 1.63 (Md = 1, SD = 0.78). When asked how often they use a password

manager (Q12), 10 indicated a value of 5 (never), with the average being 3.88 (Md =

5, SD = 1.54).

6.3 Results

We used the same evaluation strategies employed during the first user study to analyze

the data gathered to look at the user’s satisfaction with the software. This includes

looking at the user’s ability to accomplish the tasks, the user’s perceptions of the

software’s usability, the amount of time to accomplish the set tasks, the user’s mental

models and how it affected their ability to use the software. We also collected more

details from users about possible improvements to the software.

During Task 2, we saw the same persistent bug, requiring the experimenter to

intervene. In addition, we had several users experience an unusually long delay in

63

gaining access to the first testing website when accessing it from Laptop 2 (Task 6).

This was not consistent and despite debugging, a source of the issue could not be

found.

We accommodated this in the timing data as best we could. For Task 2, we

eliminated usage data between when the user successfully unlocked their key until

we received a valid session from the server (which should happen almost instantly

in a functioning system). In our results, we report both sets of data: the actual

unmodified value and the anticipated login times. We were unable to find a solution

to the long delay in accessing Website 1 from Laptop 2.

6.3.1 Usage and Outcomes

For each task, we noted the outcome according to the criteria described in section

4.4. We analyzed the notes taken during the study to see if there were any common

elements for the types of errors seen.

Of the 16 users, we found 5 users made a critical error on Task 5 when performing

the requested actions. Four users needed a prompt to complete the linking process on

the second laptop (Task 5) in order to continue. With the exception of one user, those

that required prompting only needed guidance once or twice, and those instances are

noted. One user required being walked through a portion of Task 5 in order to

complete the study. Another 3 users asked some simple questions such as “What

can my password be?” and “Can I use the same passwords on both laptops?”. The

experimenter answered these questions as simply as possible and allowed the user to

continue.

During this study only 5 users completed the tasks with critical errors, and the

remaining 11 users were successful. While this is an improvement over the first

study, we were expecting better performance. A Wilcoxon RankSum test shows no

statistically significant (p < 0.05) difference between the success rates in our two

studies. We explored why this happened in the interview and survey portions of the

study to gain additional insight into how to modify the interface.

Table 6.1 shows a summary of each task and the outcomes as described in section

64

Task Item C
o
m

p
le

te
d

w
it

h
H

e
lp

w
it

h
E

rr
o
rs

w
it

h
C

ri
ti

ca
l

E
rr

o
rs

F
a
il
e
d

1 Gen. PGP Auth Acct. 1 16 0 0 0 0
2 Create Website Account 1 16 0 0 0 0
3 Create Website Account 2 16 0 0 0 0
4 Gen. PGP Auth Acct. 2 16 0 0 0 0
5 Link PGP Auth Accounts 8 3 0 5 0
6 Login Website Account 1 16 0 0 0 0
7 Login Website Account 2 16 0 0 0 0

Table 6.1: Summary of outcomes for each task for 16 participants.

4.4. In three of the critical errors cases, the user did not verify the key when per-

forming Task 5 on Laptop 1. One of those users realized after they had committed

the error and would likely have reverted this action, had they been able to. One user

signed all the keys available on both devices sequentially during Task 5. Finally, one

user incorrectly verified the keys during Task 5 and signed the incorrect one. This

problem was due to two of the keys having the same first few characters.

6.3.2 Timing

As in the first study, we collected the timing information from each laptop for each

participant and then analyzed the data. The results of these calculations are in

Table 6.2.

It took users on average similar amounts of time to generate a PGP Auth account

on both laptops (Task 1 and 4), 12.68s on Laptop 1 versus 9.97s on Laptop 2. A

learning curve still was apparent for users when it comes to linking devices. For

example, users took almost 50% longer to perform the linking process on Laptop 1

(Task 5a) (M = 45.93s), than performing the same steps on Laptop 2 (M = 32.54s),

and that includes users needing to first unlock the key on Laptop 2.

65

Task Item Mean Median Std. Dev.
1 Gen. PGP Auth Acct. 1 12.68s 13.19s 5.43s

2
a. Unlock Key Laptop 1 11.30s 8.55s 7.69s
b. Create Website Account 1 (unmodified) 77.09s 60.26s 27.41s
c. Create Website Account 1 (adjusted) 10.93s 9.34s 7.57s

3 Create Website Account 2 3.87s 3.22s 1.72s
4 Gen. PGP Auth Acct. 2 9.97s 9.89s 3.75s

5
a. Sign Key Laptop 1 45.93s 22.01s 65.83s
b. Unlock Key Laptop 2 13.37s 6.45s 18.26s
c. Sign Key Laptop 2 32.54s 10.75s 50.81s

6 Login Website Account 1 23.42s 23.65s 19.63s
7 Login Website Account 2 0.78s 0.74s 0.11s

Table 6.2: Time taken to complete the given tasks.

Our result for users creating an account on Website 1 from Laptop 1 (Task 2) was

10.93s. This is based on the adjusted value after factoring out extra time to get past

the bug. Creating a second account, once the private key was already unlocked, took

a significantly shorter time, on average 3.87s (Task 3). These results are similar to

that found during the first study.

When logging in from Laptop 2, the private key was already unlocked due to the

completion of the linking process (Task 5). These login times reflect real world usage

of accessing an account, after the user entered in their passphrase once for the browser

session. Some users experienced an unusual delay during Task 6. This was traced to

a delay in the server’s response. As such, access times reported for Website 2 (Task 7)

are the expected real world values, once they had setup PGP auth and unlocked their

key for the browser session. We saw an average login time of 0.78s when accessing

Website 2.

6.3.3 Survey Results

As in study 1, users completed a post-test questionnaire. We first present the results

of users’ perceptions of the software. We then describe and present the evaluation of

the SUS questions. The average Likert scores given by users are shown in Table 6.3.

One participant did not respond to questions 18, 19, 20, 24 and 25, therefore, their

66

Figure 6.3: Distribution of user responses to Likert questions. Questions marked
with an * indicate the Likert values were inverted for reporting purposes. 1 = most
positive, 5 = most negative.

responses were not included in the SUS calculations. The questionnaire can be found

in Appendix B. In all cases, 1 is most positive and 5 is most negative. Responses to

negatively worded questions are inverted for reporting.

Figure 6.3 shows the distribution of responses to the perception questions. Users

almost universally found that creating a website account while using PGP Auth was

easy (Q14). Users found the new linking process relatively easy to use (Q15), with 7

users rating it a 1 and an additional 6 users rating it a 2.

When asked about their overall satisfaction with the software, users also reported

favorable results. Ten users scored the likelihood of using the software (Q18) a 4.

Rating their overall experience (Q19) with the system, users were split evenly between

a score of 4 or 5 (5 = positive).

The users were also asked several Likert-scale questions to obtain the SUS ranking

(see Figure 6.4). See section 4.6.3 for details on SUS scores.

We calculated the SUS score for the new interface using the same rules as men-

tioned in section 4.6.3. When compiled, the software received an average rating of

75.78 (SD = 14.49). Based on Sauro’s work [54], getting a SUS score of 74% would

67

Category # Question Mean Std. Dev.

Competency
5* Regarding computers 2.06 0.75
6* Regarding security 3.19 0.63

Security

10 Think about security 2.06 0.66
11 Think about memorability 1.63 0.78
12 Use a password manager 3.88 1.54
16 Attacker gain access 2.13 0.62
17 Password shared 2.00 1.03

Usability

13 Easy to setup 1.56 0.70
14 Easy to create 1.38 0.48
15 Easy to link 1.75 0.75
18* Likely to use 2.07 0.57
19* Overall experience 1.50 0.50
30* Choose stronger password 1.69 1.21

System Usability Scale

20 Use frequently 2.06 0.75
21* Unnecessarily complex 2.13 1.11
22 Easy to use 1.63 0.48
23* Need support 2.19 1.24
24 Well integrated 1.93 0.77
25* Too much inconsistency 1.93 1.00
26 People would learn quickly 1.81 0.63
27* Cumbersome to use 1.81 0.95
28 Confident using 2.00 0.71
29* Learn a lot to use 1.81 0.95

Table 6.3: Results from 5 point Likert questions. 1 = most positive, 5 = most
negative. Items marked with an * indicate the Likert scales were inverted for reporting
purposes.

68

Figure 6.4: Distribution of user responses to SUS questions. Questions marked with
an * indicate the Likert values were inverted for reporting purposes. 1 = most positive,
5 = most negative.

yield an equivalent letter grade of a B-, meaning that the software would be per-

ceived to be more usable than 74% of other software. Interestingly, the SUS scores

were lower than the perception scores. It is unclear why this happened.

We ran all of the perception and SUS results through Wilcoxon RankSum tests

to determine if there were differences between the original prototype and the newer

version. In all instances, we found no statistically significant differences.

6.3.4 Interviews

During the interview process, we once again compared users’ understanding of how

PGP Auth worked to the actual workings of the system. We then looked at the

feedback given by users about what worked well and what they felt could have been

improved.

As with the previous study, we found several misconceptions held by users. Three

users indicated that Website 1 communicated directly with Website 2 to determine

if the user had access to Website 1. One user mistakenly believed that the user’s

passwords were sent to the remote websites. Another user expressed confusion about

the relationship between keys and passwords. Finally, one user believed that the

69

passwords were shared across the two computers.

As reported in the survey section, users were generally pleased with the software.

Eight users liked the idea of needing to remember only one password; one user com-

mented: “I find myself doing the forgot password thing more often than I should.”

(User15). Another user said that having one password would let them choose a more

secure password. Seven participants liked the simplicity of the software, with one

user mentioning: “I was thinking like the fingerprint stuff, or gestures .. Seem a lot

more straight forward, without needing a body part.” (User23). Five users also liked

the security of the software. One user liked the ability to link their devices together

to share accounts. At the end of the session, one participant remarked: “This was

pretty cool.” (User24).

We asked users to share their dislikes with the software as well. Two users indi-

cated that PGP Auth was complicated, “Too complicated. If something happens in

the middle and I fail, I’d call a tech guy.” (User 19). An additional 3 users found

it hard to follow, with one commenting: “I’m new to this setup, but I would say you

would be given a code and I wasn’t sure if I was supposed to memorize that code to

log into the second computer.” (User18). One user noted that while having a single

password would be good, it would also be a bad thing due to the possibility of an

attacker gaining access to all of their accounts should they figure out the password.

The linking process was still the main point of confusion for users. One user

admitted that they just did not understand how it all worked. Two others found the

keys confusing and were not sure what keys were or how they were used. Another

two users found the system easy enough for them, but expressed concerns that other

“average” users might not understand the linking process. Finally, two other users

found the whole linking process to be a foreign concept.

To aid in further enhancements to the interface, we asked users for suggestions as

to what improvements could be made. Four users indicated that more and/or clearer

instructions would be good. One user thought that a “friendlier” interface would

help. We also had one user indicate that a diagram in the one-page information sheet

would have helped a lot.

We feel that further written instructions in the interface may not alleviate the

70

Accuracy Total Critical Errors
High 2 1
Medium 10 2
Low 4 2

Table 6.4: Scores for users’ mental models and the number of users that had critical
errors.

errors that we were seeing. Instead, it may be better to provide an instructional

video to walk the user through the process of setting up and using PGP Auth. A

guided tour document might also achieve the same result. In both cases, the user

could gain familiarity with the interface before using it.

We asked users with critical errors what could be adjusted in the interface to help

prevent those errors in the future. We only had one participant offer a suggestion:

adding labels to the keys presented in the interface. This may be possible using the

comment field in the PGP Key, however, it would be easily spoofed by an attacker

as well. So, this may not be a useful addition as it may offer a false sense of security

and open a social engineering vulnerability in the system.

6.3.5 Users’ Mental Models

Users were again asked to explain their understanding of how PGP Auth authenti-

cated to websites and how it linked two devices. Users drew a diagram of how the

system works on paper. The sheet had printed blocks for Laptop 1, Laptop 2, Website

1, and Website 2 (see Appendix D).

Even with the new interface, users still had difficulty drawing the diagram. One

user commented: “This is going to be a bit tough.” (User21). Others had difficulty

understanding specific aspects of the system: “The linking, I’m not sure I know

what was going on” (User27) and “I’d hope it doesn’t pass the encrypted password.”

(User16).

We used the same simplified correct diagram to assess users’ mental models (see

Figure 4.5). We also used the same scoring mechanism as described in section 4.6.5.

Table 6.4 has the results of this analysis.

After scoring users’ diagrams, we found that 2 received a high accuracy score, 10

71

medium, and 4 low. There does not seem to be any relation between the accuracy of

the mental model and making critical errors. Of the users that had critical errors, 1

had a high scoring mental model, 2 a medium, and 2 a low.

6.4 Summary

After making improvements to the PGP Auth interface, we found that the number

of critical errors made by users did decrease, but the difference was not statistically

significant. Although the small sample size may have affected the statistical results,

it is likely that we will need to iterate on the design of the interface to further reduce

the likelihood of critical errors.

Of those users that made critical errors, some recognized the problem and may

have undone the step had the interface provided a method to do so. A further

improvement to the interface could allow users to unlink devices and reset passwords

to aid in error recovery.

Users enjoyed the system and liked the concept. There was a desire by many

users to have only a single password, or fewer passwords than they currently have.

Users also appreciated the security of the system and felt that it was more secure

than traditional text based authentication systems.

While only a moderate understanding of how the system worked was found, this

does not seem to affect most users’ abilities to use the software. We found, between

this and the previous study, that users with a higher level of understanding were not

better able to avoid making critical errors.

Chapter 7

Discussion and Conclusion

In this thesis, we set out to develop an authentication system that would not be

susceptible to most common types of attacks. Our system needed to protect against

phishing, bulk guessing, brute-force guessing, password leaks, and shoulder surfing

attacks. We looked at using Public-Key Encryption as an authentication method

to accomplish these goals. As an enhancement to existing proposed methods, we

included the ability to cross-sign keys as a method to share account access across

devices to aid users that use multiple devices to access their accounts.

Historically, systems that used PGP have been difficult for users to understand and

use. We wanted to determine the usability of our prototype, so we ran a user study.

We found several users making the same critical errors so we modified the prototype

to address these. A second user study showed some improvement but revealed other

potential changes that might improve users’ abilities to use the software.

In this chapter, we provide a summary of the results from our studies, and then

present recommendations for future implementations. We follow with a section about

future work to further extend the use of PGP as an authentication system.

7.1 Summary of Results

We wanted to replicate in our lab a set of steps that would closely mirror normal

use of the authentication software in the real world. We devised a set of 7 tasks

that included all of the functionality of the software. Users would interact with two

separate websites that were running the PGP Auth server software and link two

different laptops together to share the accounts.

In our first study, we found that users were making critical errors in signing keys.

Many users would sign both the decoy key as well as the correct key in the signing

process. It was apparent that the interface was not aiding in preventing this error.

72

73

A second prototype was developed to address some of the problems found. A second

user study with additional participants was conducted with mixed results. Eleven of

16 users were successful.

We feel that additional user training and instruction would dramatically reduce

the number of critical errors being committed. In our second study, 3 users with

critical errors figured out how to correctly verify the keys by the end of the task.

They either mistakenly selected the incorrect key or realized that they were supposed

to verify the key after the fact. A second attempt may have yielded significantly fewer

critical errors.

Users rated the software highly and indicated that they would be very likely to

use the software. Users liked the idea of having a single password to access their

accounts and appreciated the security of using PGP as an authentication system.

Future implementations of the software should consider how to further simplify the

linking process.

Unlike with other PGP software applications, users’ understanding of how the

system worked did not affect their ability to use the software. Even users with a

medium to low understanding of the software were able to accomplish the tasks with

relative ease. Users successfully linked accounts together without understanding the

technical details of the infrastructure.

7.2 Implementation Recommendations

In order to have a successful implementation, the possible critical errors users can

make must be minimized. We found that the linking process was the only point

where users made critical errors. We suggest that the interface carefully guides users

through this process.

7.2.1 More Guidance

According to Herzog et al. [30], a wizard interface can be used to guide a user through

a complex set of tasks where users can easily make mistakes. The PGP Auth linking

process seems well suited to this type of interface. In our second prototype, we im-

plemented a wizard-like interface to walk users through the linking process. However,

74

users still had trouble successfully completing the process. Our wizard did not include

the ability to go back a single step, or to review the changes prior to final application.

This, along with the non-traditional look of our wizard may have contributed to the

poor performance of the interface.

7.2.2 Instructions

Although users recommended more instructions during the linking process, we found

that users did not read many of the instructions already provided. This is similar

to results that were found by Carroll et al. [14]. Novick et al. [47] also found that

users did not generally read online manuals, so any help displayed to users should be

minimal and part of the interface used to perform the current action.

7.2.3 PGP Key IDs are not User-Friendly

We found that some users had difficulty distinguishing between the 16-digit hex keys

that were presented. Even though they were delineated and colour-coded, some users

were randomly presented with similar looking keys. The process of validating keys

is a relatively complex cognitive task. Users are likely to take shortcuts to simplify

such tasks; for example, one user confirmed a key after looking at just the first few

digits. To address this, alternative methods of validating the key would need to be

investigated. Some possibilities could include QR codes, images generated based on

the key ID, or changing the way the key ID is displayed. The effectiveness of these

would have to be explored further.

Our initial design goal was to make PGP Auth as decentralized as possible and

avoid relying on specific authorities. However, given users’ difficulties with the sign-

ing process, it maybe worthwhile to explore whether a rendezvous system such as

was implemented in Firefox Sync might be a useful. A user could connect to the

intermediary rendezvous system with each device and instruct the rendezvous system

to link the two devices.

75

7.2.4 Server-Side Considerations

Our server, while very basic, allowed for daisy chaining of cross-signing keys. This

would allow for a device at position N in the daisy chain to have the same level of

access to the server as the original device. This may not be the best implementation

model, especially if a device becomes compromised. The server software could have

much more flexibility in terms of granting access to different devices. A server could

implement distance rules, whereby different levels of access are assigned based on the

number links between this key and the original account. Another possibility could

be to have user-defined levels of access; where a user could grant access to different

devices.

A new system being built could easily implement PGP Auth as an authentication

system. If a current system were to add PGP Auth, additional work would be required

to transition. The system would need a way to map the key IDs to existing accounts

and provide the additional HTTP headers. The amount of work should be minimal

to get a functioning system; extra work would depend on the additional features that

were desired.

7.2.5 Recommendation Summary

Based on the above discussion, the following is a list of recommendations to improve

user success rates with the PGP Auth system:

• Add a summary step in the linking process for users to verify the linkage.

• Include a help icon that would display help documentation specific to the current

action when clicked.

• Provide the user with additional visual information based on the key ID to aid

in matching keys during the linking process.

7.3 Discussion

The users in Whitten et al.’s study [64] had difficulties with many aspects of the

PGP system, including encrypting, publishing their public key, and signing keys.

76

Our interface was designed to minimize the user’s interaction with the underlying

PGP system. Our users still experienced problems when it came to signing keys, but

the encryption and publishing of keys was handled for them automatically, therefore

eliminating these sources of error.

In the UAF scheme [5], users are able to log into a remote site without having

to provide their passwords. The system generates a new key-pair for each entity

with which the user wishes to communicate. If a user wishes to access their accounts

from a new device, a new key-pair is generated and the user must authenticate the

device directly with the remote system. In PGP Auth, users can connect their devices

together without involving the remote system. In addition, when a user links their

devices, all of their web accounts are linked at the same time, instead of having to

link each one separately.

In PGP Auth, users choose a password to use to lock their private key. Unlike in

traditional text password systems, this password never leaves the device. Instead, we

use the PGP encryption scheme as the authentication mechanism. A user’s password

strength no longer affects the ability of an attacker to access a user’s web account,

unless they have access to the user’s physical device. Users’ web accounts are now

protected with strong encryption that is infeasible to crack. Once a user has unlocked

their key, they no longer have to enter in credentials when accessing websites from

this device. This makes the login process a seamless action that “just happens” when

a user accesses a website, taking little time to complete.

In our implementation of PGP Auth, we used text passwords as the mechanism to

unlock the private key. It would be possible to use other authentication mechanisms

instead. For example, a gesture based mechanism could be used on a smartphone.

The PGP Auth system could be used in other situations as well. The limitation is

that a client-server architecture is needed. For instance, no benefit would be gained

by using it as a login method to a standalone desktop system. This system could be

employed to authenticate a user to a mail server.

77

7.4 Limitations

Our user studies had small sample sizes (12 and 16 participants). With a larger

sample size, some of the results may have been different. More participants would be

required in each study to determine if there any statistical differences between the two

interfaces. In addition, our participants were largely university students. Running

the same study on a more diverse cross-section of the population may have different

results.

We conducted our user studies in the lab during 30 minute sessions. During

this time users were introduced to the software and asked to use it. In a real-world

scenario, users may have more time and resources to learn about the software and

use it. Users were also presented with prototype software which experienced some

problems during the study; this may have affected their perception of the software.

Users’ opinions about the software were based on their experience in the lab, this

may differ from their opinions about using the software in their day-to-day life.

7.5 Future Work

Our work forms the basis of an authentication system based on PGP. Many other

aspects of PGP could be used to enhance the software. We used key signing to allow

users to share accounts across devices, however, this can also be done to verify the

server. Users could sign the server key to provide their approval of the site. When

accessing the site, the client software looks for their signature on the server’s public

key to confirm that it is the same site.

PGP Auth could be extended on the server-side to support multiple user-level

access controls based on keys. The initial key associated with a website could be

granted full access to the website. Users could then selectively assign the type of

access to subsequent devices based on their PGP Auth key. For instance, a user may

want to grant their phone restricted access to their bank account so that it can only

check account balances, but give their desktop full control. At setup, the server could

assign a default level of access based on how many keys needed to be retrieved in

order to find the original account. For example, a user has three devices A, B, and

78

C; A and B are linked together, and B and C are linked together. If the user creates

an account on a website using device A and then later access the same website from

device C, the system would need to load 3 keys to find the original account.

If the server supports granting different levels of access based on the key, it may

be possible to extend this to allow users to grant access to keys belonging to other

users. A user could grant access to a friend for a subset of actions. Users could set

the permissions inside the application and the granting of access could be done just

by signing a different user’s key. For example, a user may sign a friends’ key and set

permissions to view photos. This type of access control would not necessarily require

a reciprocal signing.

For privacy or other reasons, users may want to have multiple profiles that they use

to access various websites to maintain distinct identities. PGP Auth could provide an

interface on the client side to select which profile to use when logging into a website.

This could be done on a per site basis or per session basis.

Longer term usability studies should also be performed. In our studies, we looked

at participants’ experience over a 30 minute period. Longer usage may affect users’

perceptions. Users may also gain a better understanding of how the software worked

and had a chance to develop a more complete mental model.

An ecologically valid real-world application study should also be done. This would

require a website that users regularly use to implement the protocol and test extended

usage over weeks or months.

7.6 Conclusion

In summary, we developed a method of authentication that used PGP. We iteratively

designed PGP Auth, implemented it, and conducted user testing. We were able to

successfully address our research questions:

• Can PGP be used as an authentication system?

We successfully implemented an authentication system that used PGP encryp-

tion as the authentication mechanism. Our user studies showed that users

generally liked the system and found the software usable.

79

• Can key-signing be used to enable devices to share accounts?

PGP Auth provided a method to share accounts across devices by cross-signing

keys. Users were able to perform the key-signing process and access their ac-

counts from multiple devices.

• Are users successfully able to use this system?

While users were successful at completing the tasks, some committed critical

errors when it came to signing the keys. Additional work is needed to reduce

chances of critical errors.

We offer recommendations for addressing the remaining usability issues, and be-

lieve that with a refined user interface, PGP Auth is a viable authentication mecha-

nism that addresses many of the security vulnerabilities of traditional text password

authentication.

Bibliography

[1] Anne Adams and Martina Angela Sasse. Users are not the enemy. Communica-
tions of the ACM, 42(12):40–46, 1999.

[2] Ben Adida. Beamauth: two-factor web authentication with a bookmark. In
Proceedings of the 14th Conference on Computer and Communications Security,
pages 48–57. ACM, 2007.

[3] Adam J Aviv, Katherine Gibson, Evan Mossop, Matt Blaze, and Jonathan M
Smith. Smudge attacks on smartphone touch screens. In Proceedings of the 4th
Conference on Offensive Technologies, pages 1–7. USENIX Association, 2010.

[4] Mohamad Badra, Samer El-Sawda, and Ibrahim Hajjeh. Phishing attacks and
solutions. In Proceedings of the 3rd International Conference on Mobile Multi-
media Communications, page 42. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2007.

[5] Dirk Balfanz. UAF protocol specification. https://fidoalliance.org/specs/
fido-uaf-protocol-v1.0-rd-20140209.pdf, 2014. Accessed August 11th,
2015.

[6] Abhilasha Bhargav-Spantzel, Anna Squicciarini, and Elisa Bertino. Privacy pre-
serving multi-factor authentication with biometrics. In Proceedings of the 2nd
Workshop on Digital Identity Management, pages 63–72. ACM, 2006.

[7] Robert Biddle, Sonia Chiasson, and P. C. van Oorschot. Graphical passwords:
Learning from the first twelve years. ACM Computing Surveys, 44(4):19:1–19:41,
2012.

[8] blogs.rsa.com. Anatomy of an Attack. https://blogs.rsa.com/

anatomy-of-an-attack/?lang=en, 2011. Accessed August 5th, 2015.

[9] bluetooth.org. Specification on the Bluetooth System. https://www.

bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439, 2014.
Accessed September 14th, 2015.

[10] Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70
million passwords. In Symposium on Security and Privacy (SP), pages 538–552.
IEEE, 2012.

[11] John Brooke. SUS-A quick and dirty usability scale. Usability Evaluation in
Industry, 189(194):4–7, 1996. London.

80

81

[12] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. OpenPGP
Message Format. http://www.rfc-editor.org/rfc/rfc4880, 2007. Accessed
August 5th, 2015.

[13] Xavier De Carné De Carnavalet and Mohammad Mannan. A large-scale evalua-
tion of high-impact password strength meters. ACM Transactions on Informa-
tion and System Security (TISSEC), 18(1):1, 2015.

[14] John M. Carroll, Penny L. Smith-Kerker, James R. Ford, and Sandra A. Mazur-
Rimetz. The minimal manual. HumanComputer Interaction, 3(2):123–153, 1987.

[15] Ivan Cherapau, Ildar Muslukhov, Nalin Asanka, and Konstantin Beznosov. On
the impact of touch id on iphone passcodes. In 11th Symposium On Usable Pri-
vacy and Security (SOUPS 2015), pages 257–276, Ottawa, July 2015. USENIX
Association.

[16] Whitfield Diffie and Martin E Hellman. New directions in cryptography. Trans-
actions on Information Theory, 22(6):644–654, 1976.

[17] Serge Egelman, Andreas Sotirakopoulos, Ildar Muslukhov, Konstantin Beznosov,
and Cormac Herley. Does my password go up to eleven?: The impact of password
meters on password selection. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2379–2388. ACM, 2013.

[18] S. Farrell, P. Hoffman, and M. Thomas. ”HTTP Origin-Bound Authentication
(HOBA)”. http://www.rfc-editor.org/rfc/rfc7486, 2015. Accessed August
5th, 2015.

[19] Dinei Florencio and Cormac Herley. A large-scale study of web password habits.
In Proceedings of the 16th international conference on World Wide Web, pages
657–666. ACM, 2007.

[20] Dinei Florêncio and Cormac Herley. Where do security policies come from? In
Proceedings of the Sixth Symposium on Usable Privacy and Security, page 10.
ACM, 2010.

[21] Dinei Florêncio, Cormac Herley, and Baris Coskun. Do strong web passwords
accomplish anything? HotSec, 7:6, 2007.

[22] Gabber. Gabber: The GNOME Jabber Client. http://gabber.sourceforge.

net/, 2015. Accessed August 20th, 2015.

[23] Oded Goldreich. Foundations of cryptography: volume 2, basic applications.
Cambridge university press, 2004.

[24] google.com. Google 2-Step Verification. http://www.google.com/landing/

2step/, 2015. Accessed August 5th, 2015.

82

[25] David Gthberg. Public key encryption.svg. https://commons.wikimedia.org/
wiki/File:Public_key_encryption.svg, 2006. Accessed August 20th, 2015.

[26] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password pro-
tocols. ACM Transactions on Information and System Security (TISSEC),
2(3):230–268, 1999.

[27] Eiji Hayashi and Jason Hong. A diary study of password usage in daily life. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 2627–2630. ACM, 2011.

[28] Cormac Herley and Dinei Florencio. How to login from an internet café without
worrying about keyloggers. In Symposium on Usable Privacy and Security, 2006.

[29] Cormac Herley, Paul C van Oorschot, and Andrew S Patrick. Passwords: If were
so smart, why are we still using them? In Financial Cryptography and Data
Security, pages 230–237. Springer, 2009.

[30] Almut Herzog and Nahid Shahmehri. User help techniques for usable security.
In Proceedings of the 2007 Symposium on Computer Human Interaction for the
Management of Information Technology, CHIMIT ’07, New York, NY, USA,
2007. ACM.

[31] Anil K Jain, Arun Ross, and Salil Prabhakar. An introduction to biometric
recognition. IEEE Transactions on Circuits and Systems for Video Technology,
14(1):4–20, 2004.

[32] Ari Juels and Ronald L Rivest. Honeywords: Making password-cracking de-
tectable. In Proceedings of the 2013 SIGSAC Conference on Computer and
Communications Security, pages 145–160. ACM, 2013.

[33] keylogger.org. Keylogger.org. http://www.keylogger.org/, 2015. Accessed
August 5th, 2015.

[34] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel
Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery,
Dag Arne Osvik, et al. Factorization of a 768-bit rsa modulus. In Advances in
Cryptology–CRYPTO 2010, pages 333–350. Springer, 2010.

[35] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L Mazurek,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. Of pass-
words and people: measuring the effect of password-composition policies. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 2595–2604. ACM, 2011.

83

[36] Cynthia Kuo, Sasha Romanosky, and Lorrie Faith Cranor. Human selection of
mnemonic phrase-based passwords. In Proceedings of the 2nd Symposium on
Usable Privacy and Security, pages 67–78. ACM, 2006.

[37] Asheesh Laroia. Short key IDs are bad news (with OpenPGP
and GNU Privacy Guard). http://www.asheesh.org/note/debian/

short-key-ids-are-bad-news.html, 2011. Accessed August 5th, 2015.

[38] lastpass.com. How It Works — LastPass. https://lastpass.com/

how-it-works/, 2015. Accessed August 11th, 2015.

[39] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research methods
in human-computer interaction. John Wiley & Sons, 2010.

[40] Claws Mail. Claws Mail - The user friendly, light-weight, and fast email client.
http://www.claws-mail.org/, 2015. Access August 20th, 2015.

[41] Sana Maqsood. Bend Passwords: Using Gestures to Authenticate on Flexible
Devices. PhD thesis, Carleton University Ottawa, 2014.

[42] Neil McAllister. LastPass got hacked: Change your master pass-
word NOW. http://www.theregister.co.uk/2015/06/15/lastpass_data_

breach/, 2015. Accessed August 6th, 2015.

[43] Tom McCall. Gartner survey shows phishing attacks escalated in 2007; more
than $3 billion lost to these attacks. http://www.gartner.com/newsroom/id/

565125, 2007. Accessed August 22nd, 2015.

[44] Daniel McCarney, David Barrera, Jeremy Clark, Sonia Chiasson, and Paul C van
Oorschot. Tapas: design, implementation, and usability evaluation of a password
manager. In Proceedings of the 28th Annual Computer Security Applications
Conference, pages 89–98. ACM, 2012.

[45] Hunny Mehrotra, Mayank Vatsa, Richa Singh, and Banshidhar Majhi. Does
iris change over time? http://journals.plos.org/plosone/article?id=10.

1371/journal.pone.0078333, 2013. Accessed August 6th, 2015.

[46] Robert Morris and Ken Thompson. Password security: A case history. Commu-
nications of the ACM, 22(11):594–597, 1979.

[47] David G. Novick and Karen Ward. Why don’t people read the manual? In
Proceedings of the 24th Annual ACM International Conference on Design of
Communication, SIGDOC ’06, pages 11–18, New York, NY, USA, 2006. ACM.

[48] Gregory L Orgill, Gordon W Romney, Michael G Bailey, and Paul M Orgill.
The urgency for effective user privacy-education to counter social engineering
attacks on secure computer systems. In Proceedings of the 5th Conference on
Information Technology Education, pages 177–181. ACM, 2004.

84

[49] C Pettey and R Meulen. Gartner says number of phishing attacks on us con-
sumers increased 40 percent in 2008. http://www.gartner.com/newsroom/id/
936913, 2009. Accessed August 22nd, 2015.

[50] PGP.net. Security Questions. http://www.pgp.net/pgpnet/pgp-faq/

pgp-faq-security-questions.html, 2015. Accessed August 5th, 2015.

[51] The Enigmail Project. Enigmail: A Simple Interface for OpenPGP Email Secu-
rity. https://www.enigmail.net/home/index.php, 2015. Access August 20th,
2015.

[52] Frank Reiger. Chaos computer club breaks apple touchid. http://www.ccc.

de/en/updates/2013/ccc-breaks-apple-touchid, 2013. Access August 6th,
2015.

[53] Hataichanok Saevanee, Nathan L Clarke, and Steven M Furnell. Multi-modal
behavioural biometric authentication for mobile devices. In Information Security
and Privacy Research, pages 465–474. Springer, 2012.

[54] Jeff Sauro. Measuring Usability with the System Usability Scale (SUS). http:

//www.measuringusability.com/sus.php, 2011. Accessed August 5th, 2015.

[55] Richard Shay, Saranga Komanduri, Adam L Durity, Phillip Seyoung Huh,
Michelle L Mazurek, Sean M Segreti, Blase Ur, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. Can long passwords be secure and usable? In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2927–2936. ACM, 2014.

[56] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J Hyland.
Why johnny still cant encrypt: evaluating the usability of email encryption soft-
ware. In Symposium On Usable Privacy and Security, 2006.

[57] Elizabeth Stobert and Robert Biddle. A password manager that doesn’t remem-
ber passwords. In Proceedings of the 2014 workshop on New Security Paradigms
Workshop, pages 39–52. ACM, 2014.

[58] The Firefox Sync Team. Setting up Firefox Sync Just Got a Lot Easier. https://
blog.mozilla.org/services/2010/12/22/easy-setup-for-firefox-sync/,
2010. Accessed September 14th, 2015.

[59] Jenifer Tidwell. Designing interfaces. ” O’Reilly Media, Inc.”, 2010.

[60] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. ”i added ’!’ at the end to
make it secure”: Observing password creation in the lab. In 11th Symposium On
Usable Privacy and Security (SOUPS 2015), pages 123–140, Ottawa, July 2015.
USENIX Association.

85

[61] Emanuel von Zezschwitz, Anton Koslow, Alexander De Luca, and Heinrich Huss-
mann. Making graphic-based authentication secure against smudge attacks. In
Proceedings of the 2013 International Conference on Intelligent User Interfaces,
pages 277–286. ACM, 2013.

[62] G. Waller. Cybercrime Statistics Are Staggering, and Growing. http://www.

infosectoday.com/Articles/Cybercrime_Statistics.htm, 2012. Accessed
August 5th, 2015.

[63] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics
for password creation policies by attacking large sets of revealed passwords. In
Proceedings of the 17th Conference on Computer and Communications Security,
pages 162–175. ACM, 2010.

[64] Alma Whitten and J Doug Tygar. Why johnny can’t encrypt: A usability eval-
uation of pgp 5.0. In Usenix Security, volume 1999, 1999.

[65] John D Woodward. Biometrics: Privacy’s foe or privacy’s friend? Proceedings
of the IEEE, 85(9):1480–1492, 1997.

[66] www.emc.com. RSA SecureID — Two-Factor Authentication — EMC. http://
www.emc.com/security/rsa-securid/index.htm, 2015. Accessed August 5th,
2015.

[67] Rui Zhao and Chuan Yue. All your browser-saved passwords could belong to
us: a security analysis and a cloud-based new design. In Proceedings of the 3rd
Conference on Data and Application Security and Privacy, pages 333–340. ACM,
2013.

Appendix A

PGP Auth - Information Sheet

A.1 About PGP Auth

What if you only needed a single password for all your website accounts? What if

websites never needed to know what that password was? What if you could access

all your accounts from all of your devices without having to login separately to each

one?

PGP Auth makes this possible!

PGP Auth uses PGP (Pretty Good Privacy) keys to act as your user account and

verification system. While PGP can get pretty complicated the most important thing

to know is that it allows you to identify and authorize yourself to a website without

having to provide a username or a password.

With PGP Auth each of your devices has its own privately-held authentication

key as well as a publicly-available authentication key. The private key is kept secret

on your device and is never transmitted or seen by any remote website. When you

attempt to login to a remote website, PGP Auth only provides your public key. The

remote website will then validate the key against a publicly available version of this

key. Using your public key, it will encode the information needed to complete the

authentication process in such a way that only your privately held key can decode

it. When your device successfully decodes the information you gain access to the

website.

For added protection, your private key is locked using a password of your choosing.

This password is only used to unlock your private key and the password never leaves

your device. This prevents anybody else from knowing or even figuring out what

your password is. Once unlocked, your private key will remain unlocked until the

web browser (Internet Explorer, Chrome, Firefox, etc) is closed or you turn off your

device. This means that an attacker would not only need to know your password, but

86

87

also have a copy of your private key in order to gain access to your website accounts.

PGP Auth allows you to link all your devices together so that you can seamlessly

access all your website accounts regardless of the device you are using. Linking two

devices requires you to authorize each pair of devices against each other. For example,

if you wanted your phone and desktop computer to share the same set of accounts,

you would first authorize your phone from your computer, and then later, authorize

your computer from your phone. While this authorization process may seem a little

complicated, it ensures that you have control of both devices and prevents someone

from impersonating you.

A.1.1 Key Benefits

Some of the key benefits of PGP Auth are listed below:

• Your password is never stored on remote websites, protecting you from password

leaks.

• You can access all your website accounts using a single password for each device.

• Multiple devices (laptop, desktop, phone, tablet, etc) can all be linked together

to access the same website accounts.

• Having a single password for each device allows you to use a more secure or

complicated password.

• An attacker would need your password and have access to your private key,

which is only stored on your device.

Appendix B

Survey Questions

B.1 Demographic Information

In this part of the questionnaire we collect some demographic information. You can

always decline to answer should you feel uncomfortable with a question.

1. What is your gender? (Drop-down)

• female

• male

• decline to answer

2. What is your age in years? (Text-field)

you can decline to answer by leaving this field blank

3. What is the highest level of education you have completed?

• no schooling completed

• some high school

• high school degree

• some college

• Bachelor’s degree

• Master’s degree

• Doctorate degree

• trade or other technical school degree

• other (specify below)

• decline to answer

88

89

4. What is your current occupation? (Drop-down)

• Administrative Support (e.g.,secretary, assistant)

• Art, Writing, Journalism (e.g., author, reporter, sculptor)

• Business, Management and Financial (e.g., manager, accountant, banker)

• Education (e.g., teacher, professor)

• Legal (e.g., lawyer, law clerk)

• Medical (e.g., doctor, nurse, dentist)

• Science, Engineering, and IT professional (e.g., researcher, programmer,

IT consultant)

• Service (e.g., retail clerk, server)

• Skilled Labor (e.g., electrician, plumber, carpenter)

• Student

• If selected which program?

• Other Professional

• Unemployed

• Retired

• other (specify below) (Text-field)

• decline to answer

5. How would you rate your technical competence with regards to computers?

(5-Point Likert-Scale from ’No Knowledge’ to ’Expert’)

6. How would you rate your technical competence with regards to security?

(5-Point Likert-Scale from ’No Knowledge’ to ’Expert’)

7. About how many accounts do you have that require passwords? (Drop-down)

• fewer than 5

• 5-10

90

• 11-15

• 16-20

• 21 or more

8. How many hours do you spend on a computer per day? (Text field)

9. How would you describe your password usage? (Drop-down)

• One unique password for each account. Usually a unique password for each

account.

• A couple of passwords used for all my accounts.

• One password used for all my accounts.

10. How often do you think about security when selecting your passwords?

(5-Point Likert-Scale from ’Always’ to ’Never’)

11. How often do you think about memorability when selecting your passwords?

(5-Point Likert-Scale from ’Always’ to ’Never’)

12. How often do you use password managers?

(5-Point Likert-Scale from ’Always’ to ’Never’)

B.2 PGP Authentication

In this part of the questionnaire we are asking for your opinions based on your ex-

perience with the PGP Authentication system. You can always decline to answer a

question if you feel uncomfortable with a question.

13. How easy was it to setup PGP Authentication?

(5-Point Likert-Scale from Easy to Impossible)

14. How easy was it to create a new account on a website using PGP Authentica-

tion?

(5-Point Likert-Scale from Easy to Impossible)

91

15. How easy was it to link two devices together using PGP Authentication?

(5-Point Likert-Scale from Easy to Impossible)

16. How likely is it that an attacker could gain access to your accounts that use

PGP Authentication?

(5-Point Likert-Scale from Not likely at all to Definitely)

17. How likely is it that the password your used in PGP Authentication was shared

with another system?

(5-Point Likert-Scale from Not likely at all to Guaranteed)

18. How likely would you be to use PGP Authentication to log in to websites?

(5-Point Likert-Scale from Not likely at all to Guaranteed)

19. Overall how was your experience with PGP Authentication?

(5-Point Likert-Scale from Negative to Positive)

20. I think that I would like to use this system frequently.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

21. I found the system unnecessarily complex.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

22. I thought the system was easy to use.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

23. I think that I would need the support of a technical person to be able to use

this system.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

24. I found the various functions in this system were well integrated.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

25. I thought there was too much inconsistency in this system.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

26. I would imagine that most people would learn to use this system very quickly.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

92

27. I found the system very cumbersome to use.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

28. I felt very confident using the system.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

29. I needed to learn a lot of things before I could get going with this system.

(5-Point Likert-Scale from Strongly Agree to Strongly Disagree)

30. Would having a single password for all of your accounts make you more likely

to choose a stronger password?

(5-Point Likert-Scale from Not likely at all to Definitely)

Appendix C

Interview Questions

• Describe how PGP Auth works for authenticating you on a web site.

• Describe how PGP Auth works to allow two devices to share the same account

on a webs site?

• Can you draw a diagram representing how PGP Auth works and the way it

interacts with the web browser and remote web site?

• What did you like about the system?

• What did you not like about the system?

• Any suggestions or improvements?

• Did you find anything confusing?

• (Optional) What could have been done with the interface to make the process

of linking devices together clearer?

93

Appendix D

Interview Diagram

Q: Can you draw a diagram representing how PGP Authentication works and the

way it interacts with the web browser and remote web site? Where are the keys and

passwords stored and how are they used?

94

