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Abstract
Click-based graphical passwords have been proposed as al-
ternatives to text-based passwords, despite being poten-
tially vulnerable to shoulder-surfing, where an attacker can
learn passwords by watching or recording users as they log
in. Cued Gaze-Points (CGP) is a graphical password system
which defends against such attacks by using eye-gaze pass-
word input, instead of mouse-clicks. A first user study re-
vealed that CGP’s unique use of eye tracking required spe-
cial techniques to improve gaze precision. In this paper, we
present two enhancements that we developed and tested:
a nearest-neighbour gaze-point aggregation algorithm and a
1-point calibration before each password entry. We found
that these enhancements made a substantial improvement
to users’ gaze accuracy and system usability.
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Introduction
Click-based graphical passwords [2] have recently been ex-
plored as a new method of user authentication. Despite
having many usability and security advantages, click-based
graphical passwords are potentially vulnerable to shoulder-
surfing, whereby a user is observed logging in by an attacker
who subsequently logs in with the observed credentials. Cued
Gaze-Points (CGP) [9] addresses this vulnerability by using
eye-gaze as input instead of the mouse. Since there is no
cursor following users’ gaze in CGP, it would be difficult for
an observer to determine users’ passwords. However, with-
out the feedback of a cursor, increased eye-gaze accuracy is
essential for CGP.

figure 1. Cued Gaze-Points pass-
word creation window.

We initially hypothesised that users would easily be able to
use CGP, but participants in our first study had difficulties
creating and re-entering gaze-based passwords. We found
that unintentional eye and body movements led to erroneous
gaze-points. In this paper, we present two new enhance-
ments to increase gaze accuracy without compromising the
system’s usability or security. We implemented these soft-
ware improvements in a second version of CGP. A second user
study revealed that our enhancements were effective in help-
ing users more accurately create and re-enter gaze-based
passwords. Thus, these enhancements were integrated into
our main CGP system [9].

Background
The advantage of graphical passwords over text passwords
is the human ability to remember images more easily
than text [13]. Biddle et al. [2] provide a recent survey
of existing graphical password systems, including several
other shoulder-surfing resistant graphical password schemes.
These employ techniques such as image shuffling, mental
computation, and revealing only a part of a shared secret.

We focus on cued-recall click-based graphical password
schemes where passwords consist of clicks on specific areas
of one or more images. These systems offer quick login times
and large theoretical password spaces (meaning potentially
greater security). Cued Click-Points (CCP) [3] is a scheme
where users sequentially choose one click-point on each of 5
different images. Each subsequent image is determined by
the user’s previous click-point location. If a user’s login point
is within a square tolerance region around the corresponding
creation point, then the login point is considered correct.
Several recent graphical password proposals use eye-gaze
input. Kumar et al. [11] first implemented a gaze-based au-
thentication system, EyePassword, where users gaze at the
letters of their password on an on-screen keyboard. De Luca
et al. [6, 5] have proposed eye-gesture methods for shoulder-
surfing resistant authentication. Dunphy et al. [8] tested
gaze control with PassFaces, a recognition-based graphical
password system. While these schemes show promise in
terms of usability, CGP offers a large set of potential pass-
words and built-in cues to aid multiple password recall.
Gaze-point selection can use a gaze-trigger method, where
users gaze at the desired location while pressing a button to
explicitly indicate their gaze-point selection. Another method
is gaze-dwell, where users’ gaze dwelling on an object implies
its selection. Kalman filters have been explored as a gaze-
dwell method of continued-stream user input [12]. In our
system, users’ gaze must first be used to search for the cor-
rect location to enter the login point, which makes the more
explicit gaze-trigger method preferable.
Jacob and Karn [10] suggest that, in spite of many challenges
in eye tracking technology (calibration, accuracy, etc.), eye
trackers have been instrumental in gaining human-computer
interaction insights. Vertegaal [14] found that eye tracking
has properties relating to Fitt’s Law, with some speed and
accuracy advantages over mouse-based interaction.



Cued Gaze-Points Version 1 (CGP-1)

figure 2. Illustration of how
1-point calibration calculates the
offset before password creation.

figure 3. Illustration of how 1-
point calibration corrects drift dur-
ing password creation.

Cued Gaze-Points (figure 1) is an eye-gaze version of Cued
Click-Points (CCP), where users select points on a sequence
of images with their eye-gaze instead of the mouse cursor.
As in CCP, CGP uses Centered Discretization [4] for gaze-
point identification. In our studies, we used a 17” Tobii 1750
eye-tracker. Our first version of CGP (CGP-1) used the gaze-
trigger method of gaze-point selection (see Background).

Methodology
To evaluate CGP-1’s usability, we conducted a 16-participant
user study following the published methodology for the
CCP [3] user study, including the same image set. Partici-
pants completed a 1-hour in-lab session of 6 trials, each con-
sisting of a new password creation, confirmation, and login.
Since eye-gaze is less precise than mouse input, we adjusted
the system configuration. We used a resolution of 800×600,
instead of CCP’s 1024×768, to make the images in our study
1024
800 = 1.28 times larger linearly. People have full vision
acuity within ~1◦ of their gaze’s centre [7]. Thus, a 1◦ ra-
dial target on a 17” monitor with a 800×600 resolution that
is 64 cm(25” [1]) away from the user forms a circular target
with a diameter of 51 pixels. Kumar et al.’s [11] on-screen
keyboard keys were of similar size. Although the area of full
vision acuity forms a circular target on the screen, we used
square tolerance regions because a grid system is necessary
to store passwords securely through discretisation [4].

CGP-1 Results
CGP-1’s usability was much poorer than its click-based pre-
decessor, CCP. CGP-1 participants had lower error-free con-
firm and login success rates (36% and 50% versus 83% and
96%), more mean confirm and login errors per trial (3.03 and
2.95 versus 0.39 and 0.05), and longer mean create and lo-
gin times (42.23 and 38.87 seconds versus 24.7 and 7.4 sec-
onds) than CCP participants. A closer examination of users’
gaze patterns and behaviour revealed two main problems.

First, users’ gaze would sometimes jitter away from their de-
sired target when pressing the button to record their gaze-
point, causing the system to misinterpret the user’s intended
gaze-point. Second, throughout the study, users would nat-
urally move their head and body. As the experiment session
progressed, the system increasingly misinterpreted users’
gazes and recorded all gaze-points as though they were off-
set from the users’ intended target. This drifting meant that,
although users were indeed looking at the correct point, be-
cause their head or body position had significantly changed,
the eye tracker would misinterpret their gaze location.
This problem of calibration and drift are somewhat different in
CGP than for other usages. Eye tracker use in CGP is brief and
subsequent logins may be widely separated in time. Any cal-
ibration in CGP must be very quick, otherwise it takes longer
than the password entry. Clearly, some sort of calibration
is needed since users are unlikely to sit in the exact same
position for each login and they need maximum precision to
accurately select gaze-points. Furthermore, with greater pre-
cision, smaller tolerance squares can be used without com-
promising usability. This in turn makes for a larger number
of possible distinct gaze locations on each image [4], which
increases the theoretical password space, and hence system
security (against password guessing attacks).

Gaze Accuracy Enhancements
We developed the following two enhancements that we hoped
would improve gaze accuracy.

Nearest-Neighbour Gaze Aggregation
Instead of recording users’ current gaze-point when a but-
ton is pressed, the first enhancement allows users to record
multiple gaze-points as they hold the space bar. When it is
released, the system uses a nearest-neighbour algorithm to
calculate the user’s gaze-point for this image as the point
with the most neighbours within tolerance. If there are sev-



eral such points, then their average is selected. We hoped
that this method of gaze-point selection would more accu-
rately reflect the user’s intended gaze-point. However, we
expected this might slow down gaze-point selection, since
users hold down the space bar for a few seconds with each
point.

figure 4. Illustration of how
1-point calibration calculates the
offset before login.

figure 5. Illustration of how 1-
point calibration corrects drift dur-
ing login.

1-Point Calibration
The second enhancement is a 1-point calibration that users
perform before they are about to enter a password (before
creating, confirming, or logging in with their password). A
blank image containing only a blue dot in the centre is dis-
played. Users stare at the dot and hold the space bar as
though selecting a gaze-point. Upon releasing the space
bar, the system calculates the offset distance between users’
gaze-point (calculated using the nearest-neighbour gaze ag-
gregation algorithm) and the actual location of the blue dot.
This offset is then applied to all gaze-points recorded dur-
ing that phase. We hoped that these quicker, more frequent
calibrations would eliminate the drifting problem.
The 1-point calibration is illustrated in figures 2 to 5. The
blue circle in figures 2 and 4 denotes the centre of the cali-
bration image (described above). The red arrow in figure 2
and the blue arrow in figure 4 illustrate the offsets calculated
during the corresponding create and login calibrations. Fig-
ures 3 and 5 show these offsets being respectively applied
to a create and login gaze-point. The transparent red square
represents the tolerance region around the password gaze-
point. Without the 1-point calibrations, this login would have
failed, since the login gaze-point would not have been within
the acceptable tolerance of the create point.
Users’ foveal vision roughly covers a circular area when gaz-
ing straight at the screen. However, when gazing at the
edges, the coverage is more elliptical. Eye trackers typi-
cally perform a 5-point calibration (centre and four corners)
to ensure full-screen coverage. However, in CGP, users’
gaze-points are only recorded within the displayed image,

so a quicker calibration with only one point may provide suf-
ficient coverage. In our setup (see CGP-1 section above),
the image dimensions are 19 × 15 cm, so distance between
the image’s centre and corner is 12.1 cm. This leads to an
angle of ~10.71◦ between the centre of gaze from the im-
age’s centre to the image’s corner. This projects an ellip-
tical foveal area onto the monitor, centred at the corner of
the image, with a major (longest) diameter of ~2.31 cm.
Comparatively, a circular foveal target at the centre of the
image has a diameter of ~2.23 cm, so there is at most a
2.31−2.23

2 = 0.04 cm < 1 pixel radial margin of error when
recording image gaze-points. Therefore, we believe that our
1-point calibration should not result in errors at the image
edges, given the current system parameters (such as the po-
sition of the image, and size of the image and screen).

Cued Gaze-Points Version 2 (CGP-2)
We implemented these two enhancements in a second ver-
sion of CGP (CGP-2). Following the same methodology as for
CGP-1, we repeated the study to test CGP-2 with 25 new par-
ticipants. We made the following hypotheses about CGP-2:

H1. CGP-2 will achieve higher success and lower error rates
during password re-entry than CGP-1.

H2. CGP-2 will have longer login times than CGP-1.

H3. CGP-2’s 1-point calibration will retain gaze accuracy at
the edge of the images and not result in more errors
at the edges of the images.

CGP-2 Results
Table 1 lists performance comparisons between CGP-1 and
CGP-2 with significance test results. Table 1 shows that CGP-
2 users were able to successfully log in more often and com-
mit fewer mean login errors than CGP-1 users. The table
also shows that there are no significant differences in the time
CGP-1 and CGP-2 users took to create or log in. These results



support hypothesis H1, but show that H2 cannot be accepted,
meaning our enhancements resulted in higher success rates
and fewer errors, without incurring longer login times.

table 1. Performance compar-
isons between CGP-1 and CGP-2.

System CGP-1 CGP-2 CGP-1 vs CGP-2 Sig. Tests

# of Participants 16 25 -
# of Trials 127 169 -
Successful Logins on 1st try 50% 73% χ2(1, 355) = 6.44, p < .05
Successful Logins ≤ 3 tries 75% 93% χ2(1, 355) = 7.97, p < .01
Mean Login Errors (per trial) 2.95 0.51 t(355) = 4.27, p < .0001
Mean (SD) Create Time (s) 42.2 (22.4) 44.2 (22.0) not significant
Mean (SD) Login Time (s) 47.9 (64.2) 36.7 (35.9) not significant
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figure 6. Frequencies of the Eu-
clidian distances between the cre-
ation and login points for pass-
words created, scaled by natural
logarithm (ln). The vertical lines
denote the boundary of each con-
dition’s tolerance square.

Figure 7 compares the x-coordinate of users’ creation gaze-
points to the horizontal distance (Delta X) between the re-
spective creation and login points. Login points within toler-
ance are shown as blue circles, and those outside tolerance
are red ×s. We see no more erroneous gaze-points at the
figure’s top and bottom than near the centre. The analogous
y-coordinate graph is similar. This suggests our 1-point cali-
bration did not introduce errors at the images’ edges, which
supports our earlier calculations and hypothesis H3.
Apart from the 25 participants who tested CGP-2 with a toler-
ance square size of 51×51 (T-51), 20 additional participants
tested CGP-2 with the same methodology and configuration,
except for a smaller tolerance size of 31× 31 (T-31) instead
of 51 × 51. We found a noteworthy difference in gaze-point
accuracy between these conditions. Figure 6 illustrates the
frequencies of the Euclidian distances between the creation
and login points for passwords created, scaled by natural log-
arithm. Values of 0 on the x-axis represent login points that
were precisely on the creation point, and greater x-axis val-
ues represent login points that are increasingly further away
from their corresponding creation points. Figure 6 shows that
participants in the T-31 condition, with a smaller tolerance
square, were able to gaze more closely to their initial creation

gaze-point than T-51 users (t(1756.60) = 5.65, p < .0001).
Note however that T-31 users succeeded to login on the first
attempt significantly less often than T-51 users (54% vs 73%,
χ2(1, 254) = 10.46, p < .005) [9]. This suggests that users
can intentionally gaze more accurately when prompted to do
so. However, there is a physiological limit to how much more
precisely users can gaze without further technological aid.

Conclusion
Graphical passwords offer a number of security and usabil-
ity advantages over text passwords. Although click-based
graphical passwords (such as Cued Click-Points) are poten-
tially vulnerable to shoulder-surfing, Cued Gaze-Points offers
a gaze-based alternative that is resistant to such attacks. An
initial user study on CGP revealed that its unique use of eye
tracking required special techniques to enhance users’ gaze
accuracy. We developed two novel gaze-accuracy enhance-
ments: a quick 1-point calibration and a nearest-neighbour
gaze-point aggregation algorithm. We implemented and user
tested these enhancements in a second version of CGP. The
two enhancements significantly improved users’ gaze accu-
racy, and the system’s overall usability.
Future work includes performing a long-term study of CGP
to evaluate how usable the system is over time. Studies
comparing the use of the one-point calibration and nearest-
neighbour algorithms independently would improve our un-
derstanding of how either enhancement improves gaze ac-
curacy. An extension of this would be to test either or
both of these enhancements with other applications. A di-
rect comparison of 1-point and multi-point calibrations or
nearest-neighbour with other gaze-point aggregation tech-
niques would also further research in this area.
Most monitors and laptops today have built-in cameras, and
we expect eye tracking technology to become more afford-
able in the near future, so it could have a place in everyday
user interaction. Thus, eye tracking could be used by a vari-



ety of applications, some of which may have properties sim-
ilar to CGP: a very short time period of use with potentially
long time periods between uses. We hope such applications
would benefit from the two enhancements described in this
paper.
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figure 7. Scatterplot of CGP-2 lo-
gin gaze-points. The x-axis repre-
sents the horizontal distance be-
tween the creation point and the
login point, and the y-axis repre-
sents the x-coordinate of the cre-
ation point. Blue circles are cor-
rect gaze-points and red Xs are in-
correct. The dotted vertical lines
show the tolerance region.
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