
Centered Discretization with Application
to Graphical Passwords (full paper) ∗

Sonia Chiasson
Carleton University

Ottawa, Canada

Jayakumar Srinivasan
Toronto, Canada

Robert Biddle
Carleton University

Ottawa, Canada

P. C. van Oorschot
Carleton University

Ottawa, Canada

chiasson@scs.carleton.ca, jay.srini@usask.ca, robert biddle@carleton.ca, paulv@scs.carleton.ca

Abstract
Discretization is used in click-based graphical passwords
so that approximately correct entries can be accepted
by the system. We show that the existing discretization
scheme of Birget et al.(2006) allows for false accepts and
false rejects because the tolerance region is not guaran-
teed to be centered on the original click-point, causing
usability and security concerns. Using empirical data
from a large user study, we show that this is a significant
issue in practice. We then introduce Centered Discretiza-
tion, a simpler discretization method that eliminates false
accepts and false rejects. It also allows for smaller toler-
ance regions without impacting the usability of the sys-
tem.

1 Introduction

Graphical passwords have received considerable atten-
tion lately as potential alternatives to text-based pass-
words. One such category are click-based graphical
passwords [3,5–7,16,17] where a password is composed
of a series of clicks on one or more pixel-based images.
To log in, users re-enter their click-points in the correct
order. Click-points that fall within some acceptable tol-
erance of the original points should be accepted by the
system since it is unrealistic to expect users to accurately
target individual pixels.

Robust Discretization was proposed by Birget et al. [2]
in conjunction with PassPoints [16, 17] as a means of
performing discretization of click-points so that approxi-
mately correct entries are accepted. As we explain in this
paper, it allows for false accepts and false rejects when
re-entering passwords because the tolerance region is not
guaranteed to be centered on the original click-point. By
analyzing data from a large-scale user study, we pro-
vide empirical evidence that this likely causes significant

∗This paper appears in the Proceedings of USENIX UPSEC 2008
(Usability, Psychology, Security 2008, April 2008. c©USENIX

problems in practice.
We present Centered Discretization, an alternative

scheme that eliminates false accepts and false rejects as
defined herein, providing system behaviour consistent
with users’ likely mental model of the system. It also al-
lows for a larger theoretical full password space because
the tolerance squares can be smaller while still provid-
ing the same guaranteed minimum tolerance as Robust
Discretization. We compare the usability and security
of Centered Discretization and Robust Discretization us-
ing data collected from a previous user study of Pass-
Points. For example on one of the images tested, with
a guaranteed tolerance of 9 pixels around a click-point,
up to 79% of passwords were found in one guessing at-
tack against Robust Discretization compared to 26% for
Centered Discretization.

The paper is organized as follows. Section 2 reviews
click-based graphical passwords, describes Robust Dis-
cretization, and identifies some important limitations.
Centered Discretization is introduced in Section 3. The
usability of the two schemes is compared in Section 4
while Section 5 examines how they fare against different
security threats. The paper concludes with discussion of
the results and final remarks.

2 Background and Related Work

Many graphical password schemes have been proposed
in recent years. Surveys of several graphical passwords
schemes, circa 2005, are provided by Monrose and Re-
iter [10] and Suo et al. [14]. As they are most relevant
to this current work, we focus on the category of click-
based graphical passwords. Click-based graphical pass-
words were introduced by Blonder [3] who described a
system where an image contains a set of predefined click-
able regions and a password is a sequence of clicks on
these regions. The password space is limited by the num-
ber of predefined regions within the image.

More recent systems such as PassPoints [16, 17],



Cued Click-Points [6], Persuasive Cued Click-Points [7]
and the Two-Level Texto-Graphical Authentication sys-
tem [13] allow users to choose any pixel within an image
as a click-point. Such systems must allow for some level
of inaccuracy when re-entering passwords because it is
unrealistic to expect users to always identify and target
the exact same pixel. As with regular text passwords,
rather than store graphical password coordinates “in the
clear” they are ideally cryptographically hashed to pro-
vide an additional layer of security in case the password
file is compromised. However, an approximately correct
entry must result in the same hash value as the original
password so that the system can recognize it as correct. A
simple solution is to overlay a static grid (potentially in-
visible to users) onto the image and associate each pixel
with the grid-square that contains it. The hashed pass-
word consists of the identifiers of the grid-squares rather
than the original pixels. During re-entry, if a click-point
falls within the same grid-square as the original point,
then the entry is accepted since its hashed value matches
the original. However, using a static grid leads to the
“edge problem”: if an original click-point is very close
to a grid line, then during re-entry a click-point may be
within tolerance but fall in an adjacent grid-square, and
thus be rejected by the system because the hash values
of the two points do not match. More sophisticated dis-
cretization methods are required, as discussed later in
this paper.

2.1 Security Threats

Shoulder-surfing, where an attacker may be able to ob-
serve a user’s password, is a concern for click-based
graphical passwords. The discretization scheme has little
impact on the success of a shoulder-surfing attack except
that smaller grid-squares dictates that an attacker gaining
information through shoulder-surfing must make more
accurate observations to be successful.

Dictionary attacks on click-based graphical passwords
may be successful when users select click-points falling
within hotspots (i.e., areas on an image that are more
likely to be selected across users) [8, 15], as part of their
password. Knowledge of such hotspots can be used to
prune and prioritize an attack dictionary. Thorpe and van
Oorschot [15] show that dictionary attacks can crack a
significant number of passwords with a relatively small
dictionary for PassPoints, using a dictionary based on
either sample passwords collected from actual users or
likely hotspots as determined through automated image
processing techniques. Dirik et al. [8] also had some suc-
cess using automated image processing to guess Pass-
Points passwords.

Hotspots are tied to the background images used, the
nature of the password selection task (such as having

to select 5 points on one image), and the degree of
user choice during password selection, but not to the
underlying discretization mechanism used. More re-
cent click-based graphical password systems [6, 7] have
been designed to significantly increase the effort required
by attackers to conduct hotspot analysis and to reduce
likelihood that users select click-points that fall within
hotspots.

2.2 Robust Discretization

To address the edge problem discussed in Section 2, Bir-
get et al. [2] proposed “Robust Discretization”. This ap-
proach involves using three offset grids to guarantee that
every point in the image is a “safe” distance away from
the edges of at least one grid. It was shown that three
grids were necessary and sufficient to guarantee that for
any given point in a 2-dimensional space, the system:
(1) “guarantees the acceptance of approximately correct
passwords”, i.e., if a login click-point is within distance
r from the original click-point then the input is accepted;
and, (2) “guarantees the rejection of significantly wrong
passwords”: if a login click-point is at a distance greater
than rmax (see Section 2.2.1) from the original click-
point for some specified tolerance, the input is guaran-
teed to be interpreted as different from the original click-
point.

Parameter r represents the minimum tolerance level
desired. To achieve the stated objectives, the three grids
are diagonally offset from each other by a distance of 2r
and each grid-square is of size 6rx6r. When an origi-
nal click-point is selected, a grid is chosen such that the
click-point falls at least distance r from the grid’s edges.
We say that the user-entered click-point is r-safe in this
particular grid.

When creating a password, a Robust Discretization
system selects one of the three grids for each click-point.
More specifically, for each point, the system stores the
grid identifier in the clear, and determines which grid-
square contains the click-point. The coordinates of this
grid-square are cryptographically hashed and the hash is
stored along with the grid identifier. For each click-point
in future login attempts, the system overlays the pre-
selected grid onto the image and finds the coordinates of
the grid-square containing the click-point. The resulting
password is hashed to see if it matches the stored hash
value.

2.2.1 False accepts and false rejects

While Robust Discretization guarantees at least an r-
safe tolerance around each point, it does not guarantee
that this tolerance is exactly r-safe. For example, with
grid-squares of size 6rx6r, a reasonable interpretation

2



by users might assume that a 3r tolerance buffer exists
around the original click-point. We define an evenly
distributed buffer as the centered-tolerance. However,
in Robust Discretization, an original click-point is only
guaranteed to be at least distance r from edges of the
grid-square. So in the worst case, a click-point is of dis-
tance r from one edge, but is consequently a distance
of 5r = rmax from the opposite edge. Figure 1 shows
this discrepancy between centered-tolerance and a Ro-
bust Discretization grid-square in the worst case. This
means that users clicking r + 1 pixels away in one di-
rection could have their login attempt rejected, but could
click as far as 5r pixels in the opposite direction and be
successful, which may confuse users. Furthermore, to
have a usable implementation, r needs to be sufficiently
large to allow a reasonable minimum tolerance around
an original click-point. This means that the grid-squares
will be correspondingly large (at 6rx6r), reducing the
password search space for attackers.

In light of these circumstances, we introduce the terms
false rejects and false accepts in the context of Pass-
Points implemented using Robust Discretization (see
Figure 1). False rejects occur when a user clicks within
the centered-tolerance area of a point but the click is re-
jected because it falls outside of the Robust Discretiza-
tion grid-square (as little as r + 1 away from the origi-
nal point). False accepts describe the opposite scenario,
where a click falls outside of the centered-tolerance area
but is accepted because it is still contained within the cor-
rect Robust Discretization grid-square (as far as 5r pixels
from the original point). In the best case, the Robust Dis-
cretization square and the centered-tolerance square are
perfectly overlaid and the click-point is centered in the
grid-square, but in practice the squares are usually off-
set.

2.2.2 Size of grid-squares

To be usable, the grid-squares must be sufficiently large
to tolerate reasonable inaccuracies in targeting the orig-
inal click-points. For example with Robust Discretiza-
tion, to guarantee at least a 6-pixel tolerance around the
original click-point, grid-squares must be 36x36 pixels
(6rx6r). This will avoid rejects for login click-points
that fall within 6 pixels of original click-point, but it will
increase the potential for false accepts as a large area out-
side of the 13x13 pixel1 centered-tolerance square will
also be accepted. Furthermore, requiring such large grid-
squares significantly reduces the password search space
for attackers. For example, a 640x480 pixel image con-
tains only 252 36x36 grid-squares per grid, giving a theo-
retical full password space of only 39.9 bits for a 5-click

1The extra pixel is to ensure an even 6-pixel tolerance around the
original point.

Figure 1: The small circle is the original click-point.
The centered-tolerance square is the evenly distributed
tolerance likely expected by a user. The dotted square
is the grid-square used by Robust Discretization in the
worst-case. The non-overlapping region of the centered-
tolerance square is the area where false rejects would oc-
cur in Robust Discretization, while the non-overlapping
region of the Robust Discretization square indicates false
accepts in Robust Discretization.

password, as opposed to 54.3 bits if centered-tolerance
and 13x13 grid-squares (r = 6) were used. In compari-
son, the theoretical full password space for a randomly
generated 8-character text password is 52.5 bits for a
standard 95-letter alphabet.

In essence, a usable implementation of Robust Dis-
cretization reduces security by significantly reducing the
password space. This contradicts one of the major goals
of a graphical password scheme [9], i.e., to achieve a
larger password space (assuming large images are used).

3 Centered Discretization

Motivated by these observations, we propose Centered
Discretization, which offers usability and security im-
provements. It offers centered-tolerance, which in-
creases security because the size of grid squares can be
reduced (to 2rx2r instead of 6rx6r), thereby increasing
the password search space without negatively impacting
usability since the same minimum tolerance r is guaran-
teed. It further increases usability by behaving in accor-
dance with users’ likely mental models and eliminating
false rejects and false accepts. We first introduce Cen-
tered Discretization in 1-dimension and then show how
it can be expanded to 2-D for click-based graphical pass-
words or to higher dimensions.

3



Figure 2: The continuous line L is divided into segments
of length 2r.

3.1 1-D Centered Discretization

Consider a 1-dimensional line, L, with a continuous set
of data points. A particular point on this line is repre-
sented by a real number x. Our initial objective is to dis-
cretize this line into equal segments where x falls in the
center of the segment containing it. This ensures an even
tolerance on both sides of x. A tolerance r is selected
based on system or user preferences. Each segment is
of length 2r as shown in Figure 2. To ensure that x is
centered in its segment, segment 0 may need to be offset
from the origin. This offset is represented by parameter
d.

First assume that a 1-D password consists of a sin-
gle click-point x. To store this password, we must
discretize the point by calculating its offset d (where
0 ≤ d < 2r) and its corresponding segment identifier
i (where i ≥ −1, with i = −1 occurring if x is within
r of the origin). Offset d is stored in the clear, while i
is stored in protected form as its hash value h(i, d). The
offset d is included in the hash to uniquely identify the
segment. The system must also be aware of tolerance
r that specifies the acceptable inaccuracy during pass-
word re-entry. The segment identifier i is computed by
i = b(x− r)/2rc, identifying the segment containing x.
The offset d = (x − r) mod 2r determines the distance
between the origin and the left boundary of segment 0.

To verify if a re-entered click-point x′ is acceptable,
the system computes i′ = b(x′ − d)/2rc. This calcu-
lates which segment contains x′ using the same offset as
the original point. Note that x′ is not necessarily centered
within its segment; we are simply calculating which seg-
ment contains x′ based on x’s pre-determined segments.
If x′ is within tolerance r of x, then i′ = i and hence
h(i′, d) equals the stored value of h(i, d) and system ac-
cepts the entry. If x′ is outside of the accepted toler-
ance r, it falls in a different segment and i′ 6= i, thus
h(i′, d) 6= h(i, d) and the system rejects it.

For example, assume x = 13 and r = 5.5. We com-
pute i = b(x− r)/2rc = b(13− 5.5)/11c = 0 and
d = (x − r) mod 2r = (13 − 5.5) mod 11 = 7.5.
Offset d = 7.5 is stored in the clear along with pro-
tected h(i, d) = h(0, 7.5). If a user enters x′ = 10 dur-
ing login, the system calculates i′ = b(x′ − d)/2rc =
b(10− 7.5)/11c = 0. It then compares h(i′, d) and
h(i, d) and the click-point is accepted since they match.

In practice, if a password consists of more than one click-
point, all segment indices and their offsets are concate-
nated and hashed together as one. This stops attackers
from matching individual points, and thus carrying out
an efficient divide-and-conquer attack.

3.2 Applicability to 2-D spaces

Centered Discretization can also be applied to click-
based graphical passwords on a 2-D image. This is
achieved by taking a point (x, y) in 2-D and discretizing
each coordinate value individually along its correspond-
ing axis. The segments along the x-axis can be combined
with those of the y-axis to form a grid.

For example, if we use a tolerance value of r = 9.5
pixels,2 then 2r = 19 pixels. Thus the grid-squares will
be 19x19 pixels. If we treat the click-point as coordinates
on two 1-D lines, then the grid identifier will be com-
posed of the offset for each dimension (dx, dy). Here,
there are 192 = 361 possible grids.

For a 5 click-point graphical password, each of the
5 click-points (x1, y1), . . . , (x5, y5) will have an as-
sociated grid-square index (composed for the two 1-
D segment indices) (ix, iy) and grid identifier (com-
posed of the two 1-D offsets) (dx, dy). Grid identifiers
(dx

1 , . . . , dx
5 , dy

5) are stored in the clear, while the en-
crypted portion consists of:

h(dx
1 , dy

1, i
x
1 , iy1, . . . , d

x
5 , dy

5, i
x
5 , iy5).

To prevent a pre-calculated dictionary attack, a user
identifier could be added to the hash (and also stored in
clear-text), essentially serving as a salt. To address any
concerns that offline attacks might be mounted to match
hashed password values, the cost of such an attack could
be increased by using iterated hashing, e.g., using h1000

effectively adds 10 bits of security (1000 ≈ 210).
Centered Discretization may be expanded to n-

dimensional objects for n ≥ 3 by computing results for
each dimension separately and then combining them to
form an n-dimensional grid. While this paper discusses
the applicability to 2-D images, other proposed graphi-
cal password schemes are based on 3-D spaces [1]. Such
schemes currently allow users to select predefined ob-
jects in a room as possible click-points, limiting the pass-
word space to the number of predefined clickable ob-
jects. Moving to a scheme that allows discretization of
an entire 3-D space could significantly enlarge the pass-
word space, depending on system parameters.

2In practice when dealing with graphical passwords and pixels, we
add 0.5 to r to arrange for an odd number of pixels. For example, if
the desired tolerance is 9, we need the width of the grid-square to be
(r +1+ r) where 1 represents the original click-point’s pixel centered
in the grid-square. Adding 0.5 to each r accounts for this pixel.

4



Figure 3: The Cars image [4].

Figure 4: The Pool image [11].

4 Usability Analysis

To understand the severity of false rejects and false ac-
cepts in practice, we implemented both Robust Dis-
cretization and Centered Discretization to analyze a large
data set containing coordinates of passwords and login
attempts for these passwords on a PassPoints system.
This data was collected during a field study with 191
participants [5]. The system implemented a centered-
tolerance scheme without hashing to allow the collec-
tion of information about the actual click-points. In
total, 481 passwords were created and 3339 login at-
tempts were recorded. Two different 451x331-pixel im-
ages were used; approximately half of the participants
saw the Cars image (Figure 3) and the others used the
Pool image (Figure 4).

For this current analysis, we used reconstructions to
determine whether the actual login attempts in the col-
lected data set would have been accepted if the sys-
tem implemented each of the two discretization schemes
discussed herein with various sizes of tolerance grid-
squares. Our Centered Discretization scheme was fairly
straightforward to implement since it involves centered-
tolerance; if a login click-point was within centered-

Figure 5: When the grid-square sizes are kept constant,
r (the minimum guaranteed tolerance) is larger for Cen-
tered Discretization.

tolerance for some tolerance r of the original click-point,
it was accepted, otherwise it was rejected.

Robust Discretization proved more challenging. Im-
plementation decisions such as which grid to select when
a click-point is r-safe in more than one grid and how to
deal with rounding when moving from real numbers to
pixels were not addressed in the earlier literature [2]. To
avoid misrepresenting the scheme, we sought clarifica-
tion from the original authors, and learned [12] that Ro-
bust Discretization was not implemented in their proto-
type system. Since they were not concerned with pro-
tecting password confidentiality in their usability stud-
ies [16, 17], their prototype stored all details in the
clear and used essentially a centered-tolerance algorithm
to determine whether a login attempt was successful.
It is therefore an open question as to how false re-
jects and false accepts as defined herein would have af-
fected usability and user success rates in earlier publi-
cations [16, 17], had Robust Discretization actually been
used.

We attempted to implement an optimal Robust Dis-
cretization algorithm that minimized the occurrence of
false accepts and false rejects. In cases where more than
one grid was r-safe, we calculated the distance from the
click-point to the grid edges and selected the grid where
the point was closest to the center of the grid-square. We
used real numbers for our computations and comparisons
to minimize rounding errors.

4.1 False accepts and false rejects
With Centered Discretization, the rate of false accepts
and false rejects is zero by definition since centered-
tolerance implies that the system will only accept click-
points that are within r from the original point. With Ro-
bust Discretization, false positives occur when a click-
point is accepted by the system but falls outside of the
centered-tolerance grid square of the original point. Con-
versely, false negatives occur when a click-point falls
within the centered-tolerance grid square of the original
point but is rejected by the system.

There are two approaches to measuring false negatives
and false positives. The first is to assume that the Cen-
tered Discretization square is the same size as the Robust
Discretization square (see Figure 5), but the Robust Dis-

5



Figure 6: When r is kept constant, the grid-squares
for Centered Discretization are smaller, so the password
search space is larger.

cretization square may not be centered on the click-point.
Table 1 shows the percentage of passwords that would
have been falsely accepted and falsely rejected with Ro-
bust Discretization, with tolerance squares of the same
size as Centered Discretization. For example, using the
dataset as described in Section 4 with a tolerance square
of 13x13 pixels, 21.1% of passwords are falsely rejected
during login using Robust Discretization, but would have
been accepted by Centered Discretization using a 13x13
grid. This indicates serious usability issues if a click-
based graphical password scheme was implemented us-
ing Robust Discretization, since more than a fifth of pass-
words were falsely rejected.3

The second approach is to keep parameter r con-
stant rather than the size of tolerance squares (see Fig-
ure 6). This means that the minimum guaranteed toler-
ance around a click-point is kept constant between Cen-
tered Discretization and Robust Discretization, but it also
means that the Robust Discretization squares are much
larger than the Centered Discretization squares. For this
comparison, there can be no false rejects in Robust Dis-
cretization because everything within r is guaranteed to
be accepted. However, the larger squares required by Ro-
bust Discretization lead to false accepts. For example,
with r = 6, 14.1% of passwords are falsely accepted as
correct in our dataset.

The number of false accepts and false rejects seen
with Robust Discretization raise usability concerns since
the system will appear to perform erratically: accept-
ing some clicks as correct when they were far from the
original click-point and rejecting other clicks that should
have been accepted from the users’ perspective. The
discrepancy between user expectations and system be-
haviour may lead users to feel frustrated and mistrust
of the system. Furthermore, if a Robust Discretization

3Note that a false accept can only occur when a login click-point
falls outside of the centered-tolerance grid-square, but because users
in the collected dataset [5] were very accurate in targeting their click-
points, only a small fraction of login points fell outside of centered-
tolerance and thus had the potential for being a false accept. When
considering false accepts across all logins, the percentages (Table 1)
may seem disproportionately low.

Table 1: False accept and reject rates for Robust Dis-
cretization when grid-square for both schemes are of
equal size.

Grid Robust Disc. False False
Size (r in pixels) Accept Reject
9x9 1.50 3.5% 21.8%

13x13 2.17 1.7% 21.1%
19x19 3.17 0.5% 10.0%

Table 2: False accept and reject rates for Robust Dis-
cretization when r is the same as for Centered Discretiza-
tion.

r Robust Discr. False False
(in pixels) Grid Size Accept Reject

4 24x24 32.1% 0%
6 36x36 14.1% 0%
9 54x54 4.3% 0%

system is implemented with reasonable-size grid-squares
such as those recommended in the literature [5,6,16,17],
then the value of r becomes unreasonably small (in the
range of 1-2 pixels), meaning that it is increasingly likely
that click-points very near the original point are rejected.
These problems have not been identified earlier because
as mentioned in Section 4, none of the original user stud-
ies [16,17] were conducted on systems that implemented
Robust Discretization.

5 Preliminary Security Analysis

Although the usability advantages are clear, to be accept-
able Centered Discretization should provide at least com-
parable security as Robust Discretization. We examine
how click-based graphical passwords implemented using
both schemes withstand various attacks and how the the-
oretical full password space is affected.

The password space depends on both the size of an
image and the size of the tolerance grid-squares, with
larger images and smaller tolerances leading to a larger
theoretical full password space. Table 3 shows how these
two variables affect the theoretical full password space.
While the table is organized by grid size, it is also pos-
sible to see the smaller password space for Robust Dis-
cretization when r is equal in both schemes, due to Ro-
bust Discretization’s larger grid squares. For example,
on a 640x480 image the full theoretical password space
is 59.6 bits for r = 4 using Centered Discretization but
only 45.4 bits for Robust Discretization.

6



Table 3: Bitsize of full theoretical password space for 5-click passwords.
Image Size Grid Size Centered Discr. Robust Discr. # of Squares Pswd Space for

(pixels) r (pixels) r (pixels) per Grid 5-Clicks (bits)
451x331 9x9 4 1.50 1887 54.4

13x13 6 2.17 910 49.1
19x19 9 3.17 432 43.8
24x24 11.5 4 266 40.3
36x36 17.5 6 130 35.1
54x54 26.5 9 63 29.9

640x480 9x9 4 1.50 3888 59.6
13x13 6 2.17 1850 54.3
19x19 9 3.17 884 48.9
24x24 11.5 4 540 45.4
36x36 17.5 6 252 39.9
54x54 26.5 9 108 33.8

5.1 Human-seeded dictionary attacks

We attempted to crack PassPoints passwords from our
field study (described in Section 4) using passwords col-
lected from an earlier lab study [5]. We used the click-
points collected in the lab study and generated a dictio-
nary containing all possible 5-click-point permutations
as entries. Thirty lab passwords were used for each im-
age, giving dictionaries with

(
30
5

)
≈ 236 entries for the

Cars and Pool images separately. Our dictionaries repre-
sented the simplest attack dictionary that could be built
with 30 collected passwords per image. This is similar to
the approach of Thorpe et al. [15].

OFFLINE DICTIONARY ATTACK WITH KNOWN GRID
IDENTIFIERS. The first scenario assumes that attackers
have access to the clear-text grid identifiers and hash val-
ues stored by the system. In a targeted attack against
a specific user, this reduces the password search space
since each guess can be mapped directly to the user’s
stored grid identifiers to compute the hash rather than
having to iterate through all possible grid combinations.
For example, if an attacker knows that user A’s grid-
identifier for the first click-point is (dx, dy) = (10, 10),
all guesses for that click-point can be discretized using
this grid. This may occur in an offline attack if attack-
ers gain access to the server-side files containing the grid
identifiers and hashed passwords.

Using our dictionary of 5-click-point passwords, we
searched for matches to passwords collected in the field
study (which collected 162 passwords for the Cars im-
age and 187 for Pool). For a successful match, all click-
points in a dictionary entry had to be within the grid-
squares of the user’s click-points. The grid-squares were
computed using either Robust Discretization or Centered
Discretization and we calculated how many matches

Figure 7: Offline dictionary attack with known grid iden-
tifiers for Robust and Centered Discretization with a 36-
bit dictionary and equal grid-square sizes assumed.

Figure 8: Offline dictionary attack with known grid iden-
tifiers for Robust and Centered Discretization with a 36-
bit dictionary and equal r-values assumed.

7



were made under each scheme.
We initially kept the size of the grid-squares constant

(as shown in Figure 5) for both schemes. As expected,
they performed similarly under this condition (see Fig-
ure 7) since having grid-squares of similar size means
that roughly the same number of guesses would be ac-
cepted as correct.

Conversely, if we keep r constant across both schemes
as in Figure 6 (to ensure similar usability in terms of the
guaranteed size of the tolerance around a click-point),
then Centered Discretization is significantly more se-
cure in the face of this particular attack strategy since
its grid-squares are much smaller (with comparable us-
ability). Many guesses that are successful within Robust
Discretization’s larger grid-square are rejected by Cen-
tered Discretization. For example, Figure 8 shows that
with r = 6, 14.8% of Cars passwords are cracked with
Centered Discretization, as compared to 45.1% for Ro-
bust Discretization. With r = 9, Robust Discretization
reaches up to 79% of passwords cracked. For this flavor
of dictionary attack where the grid identifier is known,
Centered Discretization can be more secure than Robust
Discretization because smaller grid squares can be used
without negatively affecting usability.

As mentioned earlier, this type of attack may be
slowed or stopped by including a user identifier as a salt
for the hashed values, forcing attackers to re-compute all
of the hash values for every user. This can be made even
more computationally expensive by using iterated hash-
ing so that each password guess requires more computa-
tional effort.

We assume that if attackers gain access to the pass-
word file, they will have access to both the hash values
and the clear-text grid identifiers. However, in the un-
usual case where only the hashed passwords are known,
the size of attack dictionaries to have the same attack
efficacy would have to increase significantly. For each
dictionary entry, attackers would need to compute a hash
for each possible grid identifier combination. This would
require significantly more work for Centered Discretiza-
tion since the number of grids is proportional to the size
of the grid-squares (13x13 grid-squares implies 132 =
169 grid identifiers). Conversely, Robust Discretization
has only 3 possible grids.

ONLINE DICTIONARY ATTACK. Alternatively, attack-
ers without access to the password file may attempt an
online attack. While attackers may not explicitly know
the grid identifiers, these are not necessary since the sys-
tem will automatically use the correct grids when inter-
preting the login attempt. The attacker need not worry
about pre-determining hash values. The attacker enters
each guessed password through the regular login user in-
terface to see if the system accepts it. The system may

limit the number of incorrect login attempts for individ-
ual accounts, slowing or stopping the attack. As with the
offline attacks, smaller grid-squares mean that guessed
click-points must be much closer to the real password
click-points in order to be accepted so the password
search space is increased.

5.2 Information Revealed

Robust Discretization requires 2 bits of information to
store one of its three grid identifiers, whereas Centered
Discretization as proposed herein needs log2(2r∗2r) bits
(e.g., for r = 8, this equals 8 bits). As the grid identifiers
are (by design) stored in the clear for both schemes, they
may be accessible to an attacker. This may have security
implications, however to our knowledge, this does not
lead to weaker security for the attacks discussed so far.

When attackers know the grid-identifier and the im-
age, visual information may be leaked. Attackers may
overlay the grid onto the image to see which parts of the
image fall near the center of the grid-squares and thus
may be able to predict which squares have a more likely
click-point (either by using knowledge of hotspots or by
personally evaluating the image). They may allow pri-
oritization of entries in the attack dictionary to test more
likely entries first. With Centered Discretization, a sin-
gle pixel at the center of each grid-square is identified,
while for Robust Discretization, a central region is re-
vealed. Knowing the center pixel does not appear to pro-
vide much advantage for attackers over knowing the cen-
ter region since guessed click-points are correct as long
as they are within the correct grid-square and the items
targeted by users as click-points are usually much larger
than a single pixel. However we have not yet pursued this
attack strategy sufficiently to have full confidence and it
is possible that combining this information with knowl-
edge of hotspots may lead to new attacks on Centered
Discretization.

6 Discussion and Conclusion

Click-based graphical passwords have been proposed as
a more usable and more secure alternative to text pass-
words. Usability testing of such systems [5–7, 16, 17]
so far has been conducted using a centered-tolerance
discretization approach and Robust Discretization may
well make them less usable. Our results suggest that
this would be the case, but since our analysis was con-
ducted post hoc, it is unknown whether users of a Ro-
bust Discretization system would resort to some kind of
compensatory behaviour. This still indicates usability is-
sues however, since users would be responsible for cop-
ing with the system’s behaviour.

8



We present the first analysis of how the usability and
security of click-based graphical passwords are affected
by the type of discretization implemented. We identified
weaknesses in Robust Discretization that lead to false re-
jects and false accepts, which we expect makes the sys-
tem appear unreliable from the users’ point of view. To
compensate, Robust Discretization must use larger tol-
erance squares, which reduces the password space con-
siderably, making it more susceptible to attack. Cen-
tered Discretization guarantees centered-tolerance, in-
creases the password space since smaller grid squares
can be used, and makes graphical passwords more us-
able in real systems by making system behaviour more
predictable since the tolerance square is centered on the
original click-point (avoiding false accepts and false re-
jects). We provide evidence of the usability and security
of both schemes by analyzing data collected from a large
user study of PassPoints. It remains open to further study
whether Centered Discretization opens the door to new
types of password attacks.

References

[1] Alsulaiman, F.A. and Saddik, A.E. A Novel 3D Graphi-
cal Password Schema. IEEE International Conference on
Virtual Environments, Human-Computer Interfaces and
Measurement Systems. July 2006.

[2] Birget, J.C., Hong, D., and Memon, N. Graphical Pass-
words Based on Robust Discretization. IEEE Transac-
tions on Information Forensics and Security, vol. 1, no.
3, September 2006.

[3] Blonder, G.E. Graphical Passwords. United States Patent
5559961, 1996.

[4] Britton, Ian. http://www.freefoto.com Accessed Feb.
2007.

[5] Chiasson, S. Biddle, R., and van Oorschot, P.C. A Sec-
ond Look at the Usability of Click-Based Graphical Pass-
words. Symp. on Usable Privacy and Security (SOUPS)
2007.

[6] Chiasson, S., van Oorschot, P.C., Biddle, R. Graphical
Password Authentication Using Cued Click-points. ES-
ORICS 2007.

[7] Chiasson, S., A. Forget, R. Biddle, P.C. van Oorschot.
Influencing Users Towards Better Passwords: Persuasive
Cued Click-Points. Technical Report TR-07-16, School
of Computer Science, Carleton University, Ottawa ON,
2007. (in submission).

[8] Dirik, A.E., Memon, N., and Birget, J.C. Modeling user
choice in the PassPoints graphical password scheme.
Symp. on Usable Privacy and Security (SOUPS) 2007.

[9] Jermyn, I., Mayer, A., Monrose, F., Reiter, M.K., and
Rubin, A.D. The Design and Analysis of Graphical Pass-
words. Proceedings of the 8th USENIX Security Sympo-
sium, 1999.

[10] Monrose, F. and Reiter, M.K. Graphical Passwords.
Chapter 9 in Security and Usability: Designing Se-
cure Systems that People Can Use. L.F Cranor and S.
Garfinkel (eds). O’Reilly, 2005.

[11] PD Photo. http://pdphoto.org Accessed Feb. 2007.

[12] Personal communication, A. Brodskiy. September 3,
2006.

[13] Sharma, M. and Bansal, T. Two-Level
Texto-Graphical Authentication. Unpublished
manuscript. Last accessed July 2007. http://www-
static.cc.gatech.edu/grads/m/manus/projects.html

[14] Suo, X., Zhu, Y., and Owen, G.S. Graphical Passwords:
A Survey. ACSAC 2005.

[15] Thorpe, J. and van Oorschot, P.C. Human-Seeded At-
tacks and Exploiting Hot-Spots in Graphical Passwords.
USENIX Security Symp. 2007.

[16] Wiedenbeck, S., Birget, J.C., Brodskiy, A., and Memon,
N. Authentication Using Graphical Passwords: Effects of
Tolerance and Image Choice. Symp. on Usable Privacy
and Security (SOUPS) 2005.

[17] Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A.,
and Memon, N. PassPoints: Design and longitudinal
evaluation of a graphical password system. Int. Journal
of Human-Computer Studies 63, pp. 102-127, 2005.

9


