
“Think secure from the beginning”: A Survey with
Software Developers

Hala Assal
School of Computer Science

Carleton University
Ottawa, ON, Canada

HalaAssal@scs.carleton.ca

Sonia Chiasson
School of Computer Science

Carleton University
Ottawa, ON, Canada

Chiasson@scs.carleton.ca

ABSTRACT
Vulnerabilities persist despite existing software security ini-
tiatives and best practices. This paper focuses on the human
factors of software security, including human behaviour and
motivation. We conducted an online survey to explore the in-
terplay between developers and software security processes,
e.g., we looked into how developers influence and are in-
fluenced by these processes. Our data included responses
from 123 software developers currently employed in North
America who work on various types of software applications.

Whereas developers are often held responsible for secu-
rity vulnerabilities, our analysis shows that the real issues
frequently stem from a lack of organizational or process sup-
port to handle security throughout development tasks. Our
participants are self-motivated towards software security,
and the majority did not dismiss it but identified obstacles to
achieving secure code. Our work highlights the need to look
beyond the individual, and take a holistic approach to inves-
tigate organizational issues influencing software security.

CCS CONCEPTS
• Security and privacy→ Software and application se-
curity;Human and societal aspects of security and pri-
vacy.

KEYWORDS
Security, Survey, HCI for development, Secure programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, Scotland Uk
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300519

ACM Reference Format:
Hala Assal and Sonia Chiasson. 2019. “Think secure from the be-
ginning”: A Survey with Software Developers. In CHI Conference
on Human Factors in Computing Systems Proceedings (CHI 2019),
May 4–9, 2019, Glasgow, Scotland Uk. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3290605.3300519

1 INTRODUCTION
Software security focuses on the resistance of applications to
vulnerabilities exercised through malicious exploitations or
unintentional triggers [2]. Best practices and initiatives have
been proposed to promote the inclusion of security through-
out the Software Development Lifecycle (SDLC) (e.g., [19, 41,
48, 55]) in part to address such vulnerabilities. However, vul-
nerabilities persist, impact millions of users [22], and extend
beyond traditional computing systems [31, 50, 51].
Developers are often blamed for vulnerabilities [6] and

are sometimes viewed as the “weakest link” who just need
to do more [28]. However, recent user-centric research has
focused on software developers as users who critically need
support when dealing with the implementation of software
that adequately addresses security [6, 28, 49].

In this paper, we take a human-centric approach to address
an under-investigated research area—the interplay between
the developer and the process of managing software secu-
rity. We focus on understanding how the human actors (e.g.,
developers) deal with, and influence, this process. Although
we do not focus on technologies to support secure software
development, this work can help inform the design of these
technologies. We note that security vulnerabilities could be
unintentional or could be introduced to a system out of mal-
ice. In this paper, we focus on supporting developers avoid
unintentional vulnerabilities; malicious developers are thus
out of the scope of this work. In particular, this paper ad-
dresses the following three research questions. RQ1: How
does security fit in the development lifecycle in real life? RQ2:
What are the current motivators and deterrents to develop-
ers paying attention to security? RQ3: Does the development
methodology, company size, or adopting Test-Driven Develop-
ment (TDD) influence software security?

https://doi.org/10.1145/3290605.3300519
https://doi.org/10.1145/3290605.3300519

To answer these questions, we conducted an online survey
study with a representative sample of 123 software develop-
ers from North America. The survey focuses on how devel-
opers and their teams direct their efforts towards software
security, as well as strategies developers employ to deal with
security. We also explore developers’ work motivation styles,
their motivation towards software security, as well as factors
that may deter developers from addressing security.
Our study shows that efforts towards software security

vary; in extreme cases, security is consistently disregarded
throughout the SDLC but most participants reported at least
some attention to it. Development methodology had no sig-
nificant effects on our results. The use of TDD was most
influential, while company size had moderate influence.

In general, our results are promising for software security
and suggest that developers do not intentionally disregard it.
Our participants have a good understanding of software se-
curity and generally oppose statements that imply ignoring
or deferring security, even though it is typically not their pri-
mary objective [14, 28, 47]. However, our analysis identified
systemic barriers to achieving secure code, e.g., the lack of
a security plan. This highlights the need to investigate and
address organizational issues that lead to insecure practices.

2 RELATEDWORK
In their overview of the usable security field, Garfinkel and
Lipford [25] highlight the shortage of human factors secu-
rity research that focuses on software developers. Naiak-
shina et al. [42] cautioned that researchers do not have the
same expertise in studies with developers as with typical end-
users, and they discussed how different study designs can
help investigate different research questions. Pieczul et al. [49]
discussed challenges facing usable security research for de-
velopers and highlighted the need for deeper understanding
of the continuously evolving field of software development.
We now discuss recent research on this subject.

Developers’ Abilities and Expertise. Developers and
their lack of security education are frequently cited as the
reason for vulnerabilities [47]. The assumption is that if
developers learned about security, they could avoid vulner-
abilities [11, 69]. Some argue the reason might be because
security guidelines do not exist or are not mandated by the
companies [67, 70, 73], or that developers might lack the abil-
ity [47] or proper expertise [13] to identify vulnerabilities.
Baca et al. [13] found that developers’ general software

development experience did not have the expected posi-
tive impact on the correctness of identifying vulnerabili-
ties. Oliveira et al. [47] argued that developers and security
education are not the root causes of security vulnerabili-
ties. They explained that throughout their tasks, developers
are consumed with solving problems that assume common

cases, whereas vulnerabilities are usually unexpected corner
cases [47] that are cognitively-demanding to identify [56].

Security Tools and Methodologies. Approaches for
improved code security include advocating for the use of
Static-code Analysis Tools (SATs) [17, 33, 35], reducing their
false positives [45, 63], and using innovative methods to
assist in vulnerability discovery [29, 63, 74]. However, despite
SATs’ benefits [10, 20], they are not widely used [10, 34].
Security tool adoption: The company’s policies and its

overall security culture are among the main factors for en-
couraging developers to adopt new security tools [70, 73].
Developers’ positive perception of the usefulness of secu-
rity to their applications also encourages security tool adop-
tion [68], whereas tools’ complexity discourages it [67, 70].
Improving tools’ usability: Smith et al. [56] proposed an

approach for building tools that support developers’ informa-
tion needs while analyzing vulnerabilities. They identified
17 categories of information that developers seek during the
analysis of SAT warnings [56, 57]. These included questions
regarding understanding vulnerabilities, attacks that might
exploit these vulnerabilities, alternative fixes, and whether a
vulnerability is worth fixing [56, 57].

In-context security: Xie et al. [71] proposed a tool to remind
web developers of secure programming practices in their In-
tegrated Development Environment (IDE). The tool statically
analyzes the code and alerts developers of potential issues on-
the-spot. Although it does not cover all vulnerability types,
usability evaluations (e.g., [40, 59, 60, 72]) showed promis-
ing results in encouraging developers’ attentiveness to se-
curity. Focusing on mobile applications, Nguyen et al. [44]
developed an IDE plugin to support Android app developers
adhere to and learn about security best practices. Studies
suggest that the plugin significantly improves code security
regardless of the developer’s experience [44].

APIs and documentation: The use of Application Program-
ming Interfaces (APIs) is recommended to improve code
security [69]. However, further research is needed for im-
proving the design of APIs to reduce vulnerability-causing
mistakes [64] and account for security implications that may
be missed by developers [46]. For example, Acar et al. [3]
found usability issues in several cryptographic APIs that can
result in compromised code security. In addition, many soft-
ware security guidance resources available to developers lack
helpful concrete examples, fail to address important topics,
and some include obsolete advice [7]. This is an unfortunate
finding, given that developers often rely on resources that
are not necessarily ideal for security [4, 5, 24]. To partially
address this, Gorski et al. [26] integrated context-sensitive
security advice in a cryptographic API, which significantly
improved the security of code using this API.

Overall, researchers have argued formore developer-centric
security experiences, e.g., by providing developers with prac-
tical security experience in using code analysis tools [13], fa-
cilitating security education in-context of developers’ IDEs [47],
focusing security training on addressingweaknesses in devel-
opers’ security knowledge [61], and facilitating interaction
between developers and security experts [61, 66].

Existing research focuses on helping developers improve
their code security by reducing their cognitive load. How-
ever, several research gaps remain in addressing the human
aspects of software security, such as factors that motivate de-
velopers to value and address security. In this paper, we take
a human-centric approach to explore developers’ software
security strategies and motivation. In addition, we inves-
tigate different characteristics that may influence security
processes, such as the development methodology, company
size, and whether the development team employs TDD.

3 METHODOLOGY
We conducted an IRB-approved anonymous online survey
with professional software developers using Qualtrics [1].

Survey Design. The survey included different types of
questions, e.g., multiple choice, Likert-scale, and short an-
swer questions. The survey had two main sections, grouping
questions by topic to minimize the cognitive load on partici-
pants and allow them to consider the topic more deeply [39].
The first section covered demographic information and in-
vestigated participants’ general work motivation through
the established 18-item Work Extrinsic and Intrinsic Moti-
vation Scale (WEIMS) [62]. The second section focused on
software security, specifically participants’ efforts towards
security, their strategies for handling security, and their opin-
ions about their teams and experiences with security issues,
as well as software security motivations and deterrents. In
addition, we asked participants to describe what it means
to them “to include security into the development process”
to capture their original understanding of software secu-
rity. However, to ensure that participants have a baseline
understanding of software security, we then provided a brief
explanation of software security and how it differs from se-
curity functions. Survey questions were informed by our
previous qualitative research [8, 9, 30]. More details about
the questions and format are available in Section 5, along
with the corresponding results.

Testing the Survey Tool.
We followed Dillman’s recommended three-stage pro-

cess [21] to pre-test the survey. First, the survey was re-
viewed by colleagues and experts in the field to uncover
potential misunderstandings or unexpected outcomes. Next,
we discussed the survey’s clarity and motivation with devel-
opers. Finally, we performed pilot-testing with 11 developers

to identify any flaws in the survey and to determine whether
it is of appropriate length.

Participant Recruitment. Recruiting developers is one
of the challenges of this type of research [6, 49]. To reach a
wide range of developers, we recruited through two methods.
(1) Through Qualtrics’ [1] paid service; we paid Qualtrics
$32 USD per participant for recruitment and data collection.
Participants received the equivalent of $6.40 in gifts (e.g.,
SkyMiles, gift cards). (2) Through announcing the survey to
our professional and industry contacts; participants received
a $10 Amazon gift card as compensation.

Data Quality. We took multiple precautions to ensure
data quality. We provided participants with a description
of software security to avoid confusion and differences in
interpretation. Participants were prevented from progressing
with the survey until they showed understanding of our
description of software security. We discarded responses
with less than seven minutes for survey completion time,
and responses with invalid data, e.g., gibberish in the open-
ended question or conflicting responses.

ParticipantDemographics. Through the different chan-
nels, we recruited a total of 140 participants, and discarded
17 for quality issues. The data reported herein is from the
remaining 123 valid responses. Average survey completion
time was 24 minutes (Md = 17). Participant demographics
are available in Table 1. Participants are currently working in
development in Canada (n = 63, 51%) or the US (n = 60, 49%).
They employ different development methodologies and de-
velop a wide range of applications. The average company
age where participants work is 41.3 years (Md = 20). Our
dataset includes a good range of established companies: 25th
and 75th percentile is 15 and 50 years, respectively.

4 SURVEY ANALYSIS
All the results presented in this paper represent participants’
self-reported behaviours and attitudes. Data analysis for the
open-ended question followed an inductive approach. The
first author performed open coding, and both authors reg-
ularly discussed emerging themes and common patterns in
the data. Quantitative data analysis used SPSS Statistics. All
statistical tests assumed p < .05 as a significant level, unless
Bonferroni-correction was applied.
All survey questions were optional, thus missing values

may exist. These are ignored from the analysis, in which
cases we indicate the actual number of data points (partici-
pants) when reporting the results.

Factor Analysis
We used factor analysis to analyze participants’ security
strategies, motivators, and deterrents. Principal axis factor
analysis enabled us to group closely related information,
thus, reducing the set of variables into a smaller set (factors),

Table 1: Summary of participant demographics

Country and Gender
Canada 63 (51%)
USA 60 (49%)

Male 93 (76%)
Female 28 (23%)
Other or not specified 2 (2%)

Professional Experience

Time spent in company µ = 8 years (Md = 5)
Time spent in team µ = 4.6 years (Md = 2.5)
Overall development experience µ = 16.4 years (Md = 15)

Organization Information
Company Age µ = 41.3 years (Md = 20)
Size 1-249 34 (28%)

250-999 29 (24%)
1,000 or more 60 (49%)

Team Information

Size µ = 13.3 members (Md = 8)

TDD Yes 32 (26%)
No 82 (67%)
Don’t know 9 (7%)

∗Dev
Method

Waterfall development 27 (22%)
Iterative (not truly agile) 26 (21%)
Rational Unified Process 1 (1%)
Agile development 58 (47%)
Other 10 (8%)

∗One participant did not indicate a development methodology.

while retaining the majority of the original information [23].
Within and between subjects statistical tests on strategies,
motivations, and deterrents all used the resultant factors.

As recommended, we retained variables with absolute fac-
tor loadings greater than 0.4 [23, 58]. For all factor analyses,
we used the Kaiser Meyer-Olkin (KMO) measure [36, 37] to
verify the sampling adequacy.

5 RESULTS
Developers’ Work Motivation
To explore participants general work motivation, we gener-
ated the Work Self-Determination Index (W-SDI) [62] from
the WEIMS. A positive W-SDI indicates a self-determined
motivation profile, whereas a negative score indicates non-
self determination [62]. Results indicate that our participants
do not lack motivation with respect to performing their job;
the vast majority (89%) exhibited self-determined motivation
profiles (W-SDI > 0).

0 20 40 60 80 100

security is important

we have security procedures

sw isn’t interesting target

% of participants
strongly disagree disagree agree strongly agree

Figure 1: Participants’ opinion of their teams.

Developers’ Mental Models of Software Security
65% of participants had a reasonable understanding of soft-
ware security. Most participants discussed that software secu-
rity aims to minimize vulnerabilities, minimize the negative
consequences of malicious attacks, and prevent unauthorized
access or use of their software or the data it handles. Partici-
pants also explained that security should be considered from
the earliest stages and throughout the development process.
For example, one participant described software security as,
“To think about security from the earliest planning phases as
possible [...] and continue to focus on security implications
throughout the remainder of the development process.” In ad-
dition, some participants indicated that security defences
should be proactive, and that developers should “think secure
from the beginning” and adopt an attacker-mindset. For exam-
ple, a participant said, “rather than asking how will we achieve
‘this’, you ask how will someone exploit ‘this’. [...] when your
processes are done in a proper, security conscious way, as much
of the potential harm as possible should be mitigated.” Partic-
ipants also discussed various methods to ensure software
security, such as internal and external audits, security test-
ing, automated checks, code analysis and reviews, thinking
about security whenwriting code, and incorporating security
in design. Some participants also discussed the importance
of following best practices, using tools and programming
languages approved by their organizations, and receiving
support from security experts in their organizations.

Behaviours and Attitudes
Participants indicated on a 4-point Likert scale (1:strongly
disagree to 4: strongly agree) their agreement with state-
ments about their teams. As shown in Figure 1, participants
generally indicated that their teams believe in the importance
of software security and that they have specific procedures
in place to address it, even though they mostly do not think
that their applications are interesting targets for attackers.
All participants, except one, who reported security is not
important for their teams also indicated that their software
is not an interesting target for attackers.

0 20 40 60 80 100

satisfied with
procedures

% of participants
strongly disagree disagree neither agree nor disagree

agree strongly agree

Figure 2: Satisfaction with teams’ procedures

0 20 40 60 80 100

likelihood of
vulnerablities

% of participants
extremely unlikely unlikely neither likely nor unlikely

likely extremely likely

Figure 3: Likelihood of vulnerabilities in team’s code

personally other team
developers

team
leaders

management users
0
20
40
60
80
100

%
of

pa
rt
ic
ip
an
ts

less no change more don’t know/no answer

Figure 4: Longterm change in awareness and concern for se-
curity following experiences of security issues (n = 43).

Experiencing Security Issues
On 5-point Likert scales, participants indicated their satisfac-
tion with their teams’ security processes and the likelihood
that their software has vulnerabilities. Figure 2 shows that
in general, participants are satisfied with their team’s han-
dling of software security. However, despite their satisfaction,
participants believed that software developed by their team
likely contains security issues (Figure 3).

Participants were asked to report whether their software
has ever experienced a security issue. More than a third of
participants reported at least one security issue. Vulnerable
shipped code was most frequently reported (24%) out of the
three potential security issues in the survey. Fourteen percent
of participants indicated that vulnerabilities were discovered
before their software was shipped, and 11% reported their
software experienced a security breach. We note that these
numbers are not mutually exclusive; some participants (11%)
reported multiple security issues.

For participants who reported security issues (n = 43), we
explored the long-term reaction to experiencing such issues

by the different stakeholders. Although it may be expected
that awareness and attitude towards security improves right
after experiencing an issue, our data suggests that this ef-
fect is longstanding. Figure 4 shows that 79% of participants
indicated that experiencing a security issue increased their
awareness and concern for security over the long-term. Par-
ticipants also reported the same effect on other developers
in their teams (77%), team leaders (88%), upper management
(74%), and users (49%). This implies that experiencing a real
threat can help avoid the optimism bias1 [52, 65] and can
lead to improved attitudes and behaviours towards security.

Forty-four percent of participants indicated that company
security issue(s) did not change their users’ awareness and
concern for security. “Users” had the highest percentage of
“no change” across the different stakeholders, as shown in
Figure 4. This is reasonable given that users are not typically
aware of such software security issues unless, e.g., a security
breach is publicized or users directly experience the effects.

We will now discuss our results arranged by research ques-
tion. In reporting Likert-scale questions, we group “strongly
agree” and “agree” responses within the text, and likewise
group “strongly disagree” and “disagree” responses. We use
Si ,Mi , and Di as labels for statement relating to strategies,
motivations, and deterrents in the survey.

RQ1: how software security fits in the SDLC.
The survey had several questions exploring development
teams’ efforts and strategies towards software security.

Efforts Towards Security. Participants reported the
percentage of effort directed towards security out of the
overall development lifecycle effort. They also reported the
percentage of effort out of all security efforts as a percent-
age for different development stages (design, implementa-
tion, developer testing, code analysis, code review, and post-
development testing). The total for all stages equaled 100%.
As shown in Figure 5, participants indicated that, on av-

erage, 19% (Md = 10%) of their teams’ overall effort in the
development lifecycle relates specifically to security tasks.
Six participants (5%) indicated that their teams do not spend
any effort on security.
We used Friedman’s ANOVA to determine whether the

distribution of security efforts significantly differs across the
different SDLC stages. As Figure 5 shows, security effort in
the implementation stage was significantly higher than in
the code analysis, developer testing, code review, and post-
development testing stages. Security effort in the design stage
was also significantly higher than in the code analysis and
code review stages. It is unclear why participants focused
their efforts at these two stages; it could be because they try
to get it right from the beginning, thus reducing the effort

1Optimism bias is the belief that “misfortune will not strike me” [52, 65].

Ov
era
ll

De
sig
n

Im
ple
me
nta
tio
n

De
v T
est
ing

Co
de
An
aly
sis

Co
de
Re
vie
w

Po
st-
de
v T
est
ing

0

20

40

60

80

100
∗∗r=0.3

∗∗r=0.4
∗∗r=0.4

∗∗r=0.3

∗∗r=0.3
∗r=0.2

%
of

eff
or
t

Figure 5: Software security efforts in the SDLC. (Figure
shows stages that significantly differ in efforts towards se-
curity. ∗∗χ2F (5) = 78.9,n = 123. ∗ : p < .05, ∗∗ : p < .01)

0 20 40 60 80 100
relying on colleagues[S9]

experts’ support[S11]
baselines standards[S2]

mental checklist[S6]
sec. integrated in checks[S12]

sec. implicit in tools[S13]
sec. docs.[S14]

deadline extensions[S4]
inhouse tools[S3]

programming tools[S1]
reviewers’ support[S16]

receive specific instr.[S15]
informal advice[S10]

personal best practices[S7]
make time for sec.[S5]

postponing sec.[S8]

% of participants
strongly disagree disagree neither agree nor disagree

agree strongly agree

Figure 6: Strategies for handling software security (n = 82)

needed during later stages, or it could be because later stages
are mainly functionality-oriented.

Strategies to Address Software Security. Participants
rated their agreement with relying on 16 potential software
security strategies on a 5-point Likert scale.
As shown in Figure 6, most participants indicated that

when fixing a security issue, they rely on support from col-
leagues who faced similar issues. For security advice, the
majority of participants reported relying on those with more
experience. More than half also indicated relying on their
own personally-devised security checklists to handle secu-
rity, or on company-wide strategies, e.g., automated checks.

Table 2: Factor analysis for security strategies.

Variables (Strategies as presented in the survey) factor
loading

Company-wide Engagement (α = 0.9)
S13: Software security best practices are incorporated in
tools we use

0.9

S12: Software security best practices are incorporated in
automated checks we run

0.8

S2: Our company/team has baseline security standards
with which 3rd party code should comply

0.8

S11: I can rely on the more experienced members of my
company/team for help and security advice

0.8

S9: When working on a software security issue, I can get
help from others who worked on similar issues

0.5

S3: We built our own in-house frameworks to help guar-
antee software security

0.5

S15: I receive specific instructions on how to solve security
issues found in my code

0.5

S14: We have a document/checklist of items that we need
to consider for our application to be secure

0.5

S16: In code reviews, reviewers explain security issues and
fixes to me rather than referring me to resources/books

0.4

Personal Strategies (α = 0.6)
S6: I have my own mental checklist of software security
issues that I need to consider in my code

0.9

S7: I have come up with my own software security best
practices

0.7

S5: When a deadline approaches, I try to reduce my work-
load to focus on securing my software

0.5

Strategies not belonging to any factor

S1: We rely on libraries and frameworks (including APIs) to help
guarantee software security
S4: I can get deadline extensions to handle software security
S8: If I didn’t have time to address software security, I’d ship the
product after adding a work around that allows me to remotely
disable the software feature suffering a security breach
S10: I prefer to ask for software security advice informally (e.g., by
casually asking a colleague, or through discussions over lunch)

KMO = 0.8

We performed factor analysis to integrate these 16 strate-
gies to a smaller set and found that 12 strategies could be
grouped into two factors; four strategies did not conform to
any factor (results in Table 2). We named the first resultant
factor: company-wide engagement, as it describes how devel-
opers rely on their companies’ strategies and support, e.g.,
relying on the more experienced team members (conform-
ing with previous research [14, 38]), or using custom tools
that handle software security. This factor encompassed nine
strategies. The second factor incorporated three strategies
and is named: personal strategies, where developers devised

1 2 3 4 5

company-wide
engagement

personal strategies

**

mean Likert-scale response scores

Figure 7: Use of strategies for handling software security af-
ter factor analysis (n = 87). (1:strongly disagree – 5:strongly
agree. Significant difference is shown. ∗∗ : p < .01)

their own software security strategies, e.g., having their own
mental checklist of issues to consider.

For further analyses, we created a variable for each factor
by averaging participants’ response to all strategies belong-
ing to the factor. Figure 7 shows that participants (n = 87)
rely more on company-wide engagement than on their own
personal strategies to handle software security. A Wilcoxon
signed rank test confirmed this observation (T = 814,p <
.01, r = −0.3). This affirms the importance of companies’ role
in ensuring a secure foundation for their software and pro-
moting software security, e.g., by building a security culture,
and facilitating security learning opportunities.

RQ2: Security Motivators and Deterrents
To explore what motivates developers to address software
security, we presented participants with a list of 21 potential
motivators, as well as 29 statements that could explain rea-
sons for deferring security. Participants ranked their agree-
ment with each statement on a 5-point Likert scale.

Software Security Motivators. We asked participants
“I care about security because...” and presented potential moti-
vations for software security. In addition to the Likert scale,
this question had a “not applicable" option in case a motiva-
tion did not apply to a participant’s workplace.
As shown in Figure 8, the top six reasons to care about

software security are self-driven motivations [53]. Partici-
pants are motivated by the challenge or by their own values
(e.g., to protect their users). Receiving financial rewards (an
external motivation) was reportedly least motivating.

We used factor analysis to combine the 21 motivators into
a smaller set (Table 3). Our factor analysis grouped 15 of them
into four factors; six motivators did not conform to any par-
ticular factor. We named the factors: workplace environment,
identifying with security importance, rewards, and perceived
negative consequences. Out of the four factors, rewards is the
only one representing external motivations [53]. For further
analyses, we created a variable for each factor by averaging2
participants’ responses to all motivators belonging to the
2According to Boone and Boone [18], this approach is appropriate with
ordinal data because we are interested in the “composite score” representing
the factors.

0 20 40 60 80 100
understanding implications[M9]

enjoying sec. tasks[M17]
shared responsibility[M14]

caring abt. users[M12]
caring abt. co. reputation[M11]

self challenging[M18]
losing customers[M2]
perceived benefits[M8]

personal responsibility[M15]
enjoying sec. learning[M16]

colleagues’ sec. attitudes[M10]
publicized breaches[M21]

mandatory sec. practices[M7]
external audits[M1]

co. culture[M13]
recognition[M4]

business loss[M3]
career growth[M5]

relevant breach[M19]
experiencing breach[M20]

financial rewards[M6]

% of participants
strongly disagree disagree neither agree nor disagree

agree strongly agree

Figure 8: Software security motivators (n = 63)

factor. Figure 9 shows participants’ (n = 76)3 motivations for
software security.

We found statistically significant differences between the
four software security motivators (χ 2F (3) = 85.75,p < .01).
Pairwise comparisons using Wilcoxon tests with Bonferroni
correction were used to follow up this finding. We found
that rewards was the least significant motivator compared
to workplace environment (T = 1.13,p < .01, r = 0.44),
identifying with security importance (T = 1.78,p < .01, r =
0.69), and perceived negative consequences (T = −0.95,p <
.01, r = −0.37). In addition, it appears that identifying with
security importance is the most motivating factor; it can mo-
tivate developers more than perceived negative consequences
(T = 0.83,p < .01, r = 0.32) and workplace environment
(T = −0.65,p < .05, r = −0.25).

Participants’ software securitymotivation appears tomatch
their general work motivation pattern. Their top security
motivators are all intrinsic and internal motivations [53].

Deterrents to Software Security. Participants generally
opposed statements that imply deferring or ignoring security,
as suggested by the overwhelmingly red and orange chart
in Figure 10. The biggest deterrent to software security was
the lack of a formal plan or process, followed by participants
being unaware of security code-analysis tools.

3We could only include data from participants who answered all questions
in each factor.

Table 3: Factor analysis for motivation

Variables (Motivators as presented in the survey) factor
loading

Workplace Environment (α = 0.9)
M13: Software security is in my company’s culture 0.7
M7: My company mandates security practices & I have to
follow them

0.7

M10: My colleagues care about software security 0.6
M8: I see the benefit in security practices mandated by my
company

0.6

Identifying with Security Importance (α = 0.8)
M14: Software security is a shared responsibility by all
those involved in the development lifecycle

0.8

M12: I care about my users’ security and privacy 0.7
M9: I understand that my code can have sec implications 0.6
M16: I feel good when I learn about software security 0.6
M15: I see software security as my responsibility 0.6
M11: I care about my company’s reputation 0.4

Rewards (α = 0.8)
M6: My efforts towards sw sec are financially rewarding 0.8
M4: My efforts towards software security are recognized 0.8
M5: My efforts towards software security help me grow in
the company

0.7

Perceived Negative Consequences (α = 0.6)
M21: I realized securing my code is important after reading
about security breaches in the news

0.7

M1: My company is audited for sw sec by an external entity 0.6
Motivations not belonging to any factor

M2: My company would lose customers in case of a sw sec breach
M3: My company could fail in case of a software security breach
M17: I feel good when I address potential sec issues in my code
M18: I like to challenge myself to write secure code
M19: Similar software to that on which I work suffered a security
breach and management now cares about securing our applications
M20: Similar software to that on which I work suffered a security
breach and it was an eye-opener for me

KMO = 0.9

Our factor analysis combined 18 of the 29 software de-
terrents into four factors; 11 deterrents did not correspond
to any particular factor (Table 4). Our first two factors are
security is irrelevant and competing priorities & no plan. These
describe how a lack of security can stem from systemic causes
within the company or team, such as whether there are conse-
quences for the lack of security, whether security is a priority,
and if specific security plans exist. The other two factors,
unequipped for security and disillusioned, describe security
deterrents on a more personal level, e.g., a lack of support,

1 2 3 4 5

workplace environment

identifying with se-
curity importance

rewards

perceived nega-
tive consequences

**
*

**
**

**

mean Likert-scale response scores

Figure 9: Motivations for software security after factor anal-
ysis (n = 76). (1:strongly disagree – 5:strongly agree. Signifi-
cant difference is shown ∗ : p < .05, ∗∗ : p < .01)

0 20 40 60 80 100
no formal plan[D20]

unaware of tools[D22]
sec. is low priotity[D9]

non-sec. sensitive s/w[D15]
no people-power[D25]

no knowledge[D24]
no breaches[D16]
no budget[D26]

attacks are unlikely[D14]
another’s responsibility[D5]

losing business opportunity[D10]
other priorities[D8]
sec. is ignored[D7]

no need to change[D27]
no accountability[D13]
no repercussions[D11]

not my responsibility[D1]
no time[D23]

tools handle sec.[D6]
extra burden[D3]
not mandatry[D4]

established procedures[D28]
doesn’t fit schedule[D2]
no one else cares[D18]

unuseful sec. tools[D21]
perceived negatively[D19]
passive colleagues[D17]

sec. is unconsequential[D12]
resisting sec.[D29]

% of participants
strongly disagree disagree neither agree nor disagree

agree strongly agree

Figure 10: Deterrents to software security

knowledge, and awareness can deter developers from ad-
dressing security, as well as being in a workplace environ-
ment that thwarts, rather than nurtures, security efforts.

Considering the four factors, as Figure 11 shows, the two
most frequent deterrents to software security were (1) being
unequipped for security because of a perceived lack of security

Table 4: Factor analysis for security deterrents

Variables (Deterrents as presented in the survey) factor
loading

Security is Irrelevant (α = 0.8)
D1: Software security is not my responsibility because it’s
not in my job description

0.6

D15: The software I develop is not prone to security attacks 0.6
D16: Things are fine as they are, we haven’t experienced any
security breaches

0.6

D11: There are no repercussions to ignoring sw security 0.6
D12:We do not have competition, sowewon’t lose customers
in case of a software security issue

0.5

D5: Sw sec is handled by someone else in the product lifecycle 0.5
Competing Priorities & no Plan (α = 0.9)

D20: We do not have a formal process for software security -0.7
D4: Software security is not mandated by my employer -0.7
D8: We defer software security due to competing priorities -0.7
D7: My team doesn’t spend any specific efforts towards soft-
ware security

-0.6

D9: In my team, it is more important to deliver features on
time than to address software security

-0.6

Unequipped for Security (α = 0.8)
D22: I am not aware of tools that would allow security anal-
ysis of my code

0.8

D24: I do not have necessary knowledge to address sw sec. 0.6
D21: Available security code analysis tools are not useful 0.5
D28: We have been following the same procedures for years
and I don’t want to change them

0.5

Disillusioned (α = 0.9)
D18: I understand the importance of addressing security, but
I won’t waste my time on it since no one else does

-0.7

D19: I used to push for software security, but I was perceived
negatively by my colleagues

-0.7

D17: No one else cares about software security, I won’t either -0.6
Deterrents not belonging to any factor

D2: Software security does not fit in my schedule
D3: Sw sec is a burden on top of my main responsibilities
D6: We don’t have to worry much about security because
frameworks [...] we use handle software security for us
D10: If we focus more on software security, we might lose our
business opportunities
D13: I won’t be blamed if a security issue is found in my code
D14: It’s unlikely that attackers will attack us
D23: I do not have time to address software security
D25: There aren’t enough people in my team to address sw sec
D26: My team does not have the budget to address sw sec
D27: We’re doing fine, I don’t think we should change in terms of
software security
D29: I tend to resist when I get assigned a security task

KMO = 0.9

knowledge or the unavailability of necessary tools, and (2)
competing priorities & no plan, where security has a lower

1 2 3 4 5

security is irrelevant

competing priorities & no plan

unequipped for security
disillusioned

** **
**

mean Likert-scale response scores

Figure 11: Security deterrents after factor analysis.
(1:strongly disagree – 5:strongly agree. Significant dif-
ference between deterrents is shown. ∗ : p < .05, ∗∗ : p < .01)

priority than other aspects of the software and the team lacks
specific security plans or procedures.

We found a statistically significant difference between par-
ticipants’ responses for the four factors (χ 2F (3) = 51.1,p <
.01). Pairwise comparisons usingWilcoxon tests with Bonfer-
roni correction showed that being disillusioned was less likely
than thinking security is irrelevant (T = 0.7,p < .01, r = 0.3),
having competing priorities & no plan (T = 0.9,p < .01, r =
0.3), and being unequipped for security (T = 1,p < .01, r =
0.4). No other pairs showed significant differences.

6 RQ3: EFFECT OF DIFFERENT
CHARACTERISTICS ON SOFTWARE SECURITY

In this section, we explore the impact of three main charac-
teristics on software security overall: (1) the development
methodology used by participants’ teams, (2) the size of the
company where participants work, and (3) whether they per-
form TDD. Specifically, we explore whether these character-
istics influence security efforts, software security strategies,
security motivators, or deterrents to software security. We
focus on these three characteristics because theywere consid-
ered as potential influencers on software security in previous
literature (e.g., [12, 15]) or in our previous discussions with
software developers and security experts.

Development Methodology. Focusing on the three de-
velopment methodologies with the highest percentages of
participants in our data: Waterfall (22%), Iterative(21%), and
Agile development(47%), our analysis using Kruskal-Wallis
tests with Bonferroni-correction showed that, contrary to
previous literature [12, 15, 54], the development methodol-
ogy did not significantly influence teams’ handling of soft-
ware security. We did not find evidence that the develop-
ment methodology influenced teams’ overall effort towards
software security, nor did it influence their effort per devel-
opment stage. In addition, it had no influence on software
security strategies or deterrents to security. Our results in-
dicated that the development methodology may influence

some security motivations, identifying with security impor-
tance (H (2) = 7,p < .05), rewards (H (2) = 6.4,p < .05),
and perceived negative consequences (H (2) = 6.4,p < .05).
However, follow-up pairwise comparisons with Bonferroni-
correction were not significant.

Company Size. Following the classification used inNorth
America [16, 27], we classified participants’ companies into
either Small and Medium Enterprises (SMEs) if the company
had fewer than 500 employees, and Large Enterprises (LEs)
otherwise. Our dataset contained 49 (40%) participants in
SMEs and 74 (60%) in LEs.

Using Mann-Whitney tests, we found no evidence that the
company size influenced the percentage of effort on software
security, overall or per development stage. In addition, it did
not influence participants’ software security strategies.
However, our results show a significant difference in se-

curity motivations between SME and LE participants. Being
in a workplace environment that nurtures security was more
motivating for participants in LEs, compared to those in
SMEs (U = 861,n = 76,p < 0.05, r = −0.2).

Our results also show that deterrents to software security
vary significantly with company size. Specifically, having
competing priorities & no plan is significantly more common
deterrent to security for participants in SMEs compared to
those in LEs (U = 1345.5,p < 0.05, r = −0.2). Likewise,
being unequipped for security is a significantly more common
deterrent to security for SME participants compared to their
counterpart (U = 1413,p < 0.05, r = −0.1).
We also performed post-hoc analysis to explore further

effects of company size, e.g., whether it had an effect on
participants’ behaviours and attitudes towards software se-
curity, or whether the company experienced security is-
sues. All the tests were not significant, e.g., we found no
difference between SME and LE participants in considering
that their applications are interesting targets for attackers
(U = 1552.2,n = 123,p = 0.2).

Test-Driven Development (TDD). Out of the charac-
teristics explored, TDD most influences software security.
Our results show that efforts directed towards software

security are influenced by whether the team performs TDD.
Participants who perform TDD spend significantly more
overall effort on security than those who do not perform
TDD (U = 905,n = 114,p < 0.01, r = −0.2). Focusing
on each SDLC stage, TDD participants spend significantly
higher efforts towards security during code analysis than
their counterparts (U = 554.5,n = 114,p < 0.01, r = −0.3).
We also found that adopting TDD influences software

security strategies. TDD participants rely significantly more
on company-wide engagement (U = 397,n = 80,p < 0.01, r =
−0.3) and on their own personal strategies (U = 506,n =
80,p < 0.05, r = −0.2) to handle software security than
participants who do not perform TDD.

Finally, our results show that TDD participants are not
significantly different than those who do not perform TDD
when it comes to security deterrents and the majority of se-
curity motivators. However, we found that rewards is a more
significant security motivator to TDD participants compared
to their counterparts (U = 453,n = 68,p < 0.01, r = −0.1).

7 DISCUSSION
Many participants indicated their companies faced security
issues, including security breaches. This could be because
functionality and on-time shipping were prioritized and secu-
rity was postponed. In fact, seven participants who reported
vulnerabilities in shipped code indicated that when deadlines
approach, they ship their code with a backdoor to address
the security issues later. This behaviour is clearly troubling.
However, in general, our results are promising for soft-

ware security. Whereas previous research [67, 70, 73] found
that developers generally exhibit a “security is not my re-
sponsibility” attitude, the vast majority of our participants
acknowledge the importance of software security and have
specific procedures in place to address it. The few partici-
pants who indicated security is not important for their teams
indicated that their software is not an interesting target to
attackers. We do not imply that completely ignoring security
is acceptable, but rather consider the possibility that these
teams may be making an educated economic decision, having
assessed the risk and found that it was negligible.

In addition, our participants appear to have a general un-
derstanding of what software security means, and they ac-
knowledged that their applications may have security issues
despite their efforts. It is interesting that some participants
(n = 33) indicated that security is important for their teams
and that they are satisfied with how they are handling soft-
ware security, but also indicated that their software is likely
vulnerable. We did not expect this combination. One explana-
tion could be that participants were being pragmatic; there
will always be security issues and you can never prove se-
curity [32]. Another explanation could be that participants
are satisfied that they are doing their best to ensure secu-
rity given their circumstances, even if it may not be ideal
or enough. Previous research [9] discussed that a lack of
resources may discourage teams from addressing security
or following security best practices. In our work, we found
evidence that the lack of resources may be why participants
believe that their applications are vulnerable, despite being
satisfied with their practices. For example, 45% (15 of 33)
of participants displaying this interesting combination indi-
cated they lack at least one of: knowledge, awareness, budget,
tools, time, and people-power to handle software security. In
addition, the lack of security plans and resources were also
reasons for deferring security at SMEs. These are reasonable
reasons that may prevent teams or developers from focusing

on software security. By identifying these deterrents, we can
better focus our efforts on overcoming them, e.g., through
providing better support for teams to devise security plans
that fit their resources and work styles.
In general, our participants were self-motivated towards

their work, as well as software security. Being a hard and cog-
nitively demanding task [28, 47], software security would
likely benefit from developers’ self-motivation. Research
showed that this type of motivation leads to better perfor-
mance, engagement, and cognitive abilities [53]. Thus, rather
than relying mainly on external motivations (e.g., rewards),
companies could focus their efforts on promoting internal
motivations towards software security (e.g., by portraying se-
curity as their collective professional responsibility, and rais-
ing developers’ awareness of the implications of their code
on their users and their company’s reputation). However,
we should not expect developers to take on the challenge
without adequate support. In addition to security tools and
methodologies, developers should receive support within
their workplace. For example, companies can work towards
establishing security plans to guide developers’ security ef-
forts. Companies and teams can also facilitate collaboration
between developers and security experts. This collaboration
can bridge the gap between the two groups [61], and would
enable developers gain practical security experience which
can improve their code.

8 LIMITATIONS
Conducting the survey online may have influenced data
quality, but we took measures to filter out poor quality re-
sponses. The different methods of recruitment and compen-
sation helped reach a broad range of participants, though,
this difference may have influenced developers’ willingness
to answer the survey. Our results are based on participants’
self-reported responses, which may be subject to bias and
may not exactly represent real-life. However, we followed
recommendations to reduce social-desirability bias by en-
suring participants’ anonymity [43]. The lists of software
security strategies, motivations, and deterrents included in
our survey are non-comprehensive. However, our lists reflect
at least a subset of existing developers’ strategies, motiva-
tions and deterrents to software security [30].

9 CONCLUSION AND FUTUREWORK
We presented a survey study with 123 participants to explore
how they address software security, as well as security moti-
vators and deterrents. Participants consider security as part
of their development process to varying degrees. Most in-
terestingly, we believe that our results affirm that developers
are not the weakest link. Our analysis shows that participants
are self-driven in their work in general, as well as in their
motivation towards software security. Thus, developers in

our study are not explicitly ignoring security, dismissing it,
or considering it outside of their responsibility. In fact, they
are most motivated towards software security when they
recognize and identify with its importance. On the other
hand, the most important deterrents for software security
relate to the (mis)management of the process. For example,
dealing with competing priorities, and the lack of security
plans, procedures, knowledge, or resources are the main
causes for deferring security. Our work highlights the need
to look beyond the individual and to focus on understanding
organizational issues that lead to insecure practices.
For future work it would be interesting to explore po-

tential relationships between motivations, deterrents, and
strategies for software security (e.g., do certain deterrents
lead developers to adopt certain strategies?) In addition, as
our results indicated that experiencing a security issue (e.g.,
a breach) can increase software security awareness, it would
be interesting to investigate security procedures and atti-
tudes in companies that have experienced such issues and
compare it to others that have not.

10 ACKNOWLEDGMENTS
We thank our participants for their time. H. Assal acknowl-
edges her NSERC Postgraduate Scholarship (PGS-D). S. Chi-
asson acknowledges funding from NSERC for her Canada
Research Chair and Discovery grants.

REFERENCES
[1] [n. d.]. Qualtrics. https://www.qualtrics.com. [Accessed June-2018].
[2] [n. d.]. Risk Management Guide for Information Technology Systems.

NIST Technical Series Publication ([n. d.]).
[3] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and

C. Stransky. 2017. Comparing the Usability of Cryptographic APIs. In
IEEE Symposium on Security and Privacy.

[4] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.
2016. You Get Where You’re Looking for: The Impact of Information
Sources on Code Security. In IEEE Symp. on Security and Privacy. https:
//doi.org/10.1109/SP.2016.25

[5] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.
2017. How Internet Resources Might Be Helping You Develop Faster
but Less Securely. IEEE Security Privacy 15, 2 (2017).

[6] Y. Acar, S. Fahl, and M. L. Mazurek. 2016. You are Not Your Developer,
Either: A Research Agenda for Usable Security and Privacy Research
Beyond End Users. In IEEE Cybersecurity Development. https://doi.org/
10.1109/SecDev.2016.013

[7] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl.
2017. Developers Need Support, Too: A Survey of Security Advice for
Software Developers. In Cybersecurity Development (SecDev).

[8] H. Assal and S. Chiasson. 2018. Motivations and Amotivations for
Software Security. In SOUPS Workshop on Security Information Workers
(WSIW). USENIX Association.

[9] H. Assal and S. Chiasson. 2018. Security in the Software Development
Lifecycle. In Symp. on Usable Privacy and Security. USENIX.

[10] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh.
2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5 (2008).
https://doi.org/10.1109/MS.2008.130

https://www.qualtrics.com
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SecDev.2016.013
https://doi.org/10.1109/SecDev.2016.013
https://doi.org/10.1109/MS.2008.130

[11] B. K. Marshall. [n. d.]. Passwords Found in the Wild for January 2013.
http://blog.passwordresearch.com/2013/02/. [Accessed April-2017].

[12] D. Baca,M. Boldt, B. Carlsson, andA. Jacobsson. 2015. ANovel Security-
Enhanced Agile Software Development Process Applied in an Indus-
trial Setting. In Int. Conf. on Availability, Reliability and Security.

[13] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg. 2009. Static Code
Analysis to Detect Software Security Vulnerabilities - Does Experience
Matter?. In Int. Conf. on Availability, Reliability and Security.

[14] R. Balebako and L. Cranor. 2014. Improving App Privacy: Nudging
App Developers to Protect User Privacy. IEEE Security Privacy 12, 4
(2014).

[15] S. Bartsch. 2011. Practitioners’ Perspectives on Security in Agile
Development. In Int. Conf. on Availability, Reliability and Security.
https://doi.org/10.1109/ARES.2011.82

[16] G. Berisha and J. Shiroka Pula. 2015. Defining Small andMedium Enter-
prises: A Critical Review. Academic Journal of Business, Administration,
Law and Social Sciences 1 (2015).

[17] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. 2010. A Few Billion Lines
of Code Later: Using Static Analysis to Find Bugs in the Real World.
Commununications of the ACM 53, 2 (2010).

[18] Harry N Boone and Deborah A Boone. 2012. Analyzing likert data.
Journal of extension 50, 2 (2012), 1–5.

[19] CERT and CMU. [n. d.]. Cybersecurity Engineering. https://
www.cert.org/cybersecurity-engineering/. [Accessed Feb-2017].

[20] B. Chess and G. McGraw. 2004. Static Analysis for Security. IEEE
Security & Privacy 2, 6 (2004). https://doi.org/10.1109/MSP.2004.111

[21] D. A. Dillman. 2000. Mail and Internet Surveys: The tailored design
method. John Wiley & Sons, Inc.

[22] EQUIFAX. 2018. 2017 Cybersecurity Incident & Important Consumer
Information. https://www.equifaxsecurity2017.com. [Accessed June-
2018].

[23] A. Field. 2013. Discovering statistics using IBM SPSS statistics. SAGE
Publications Ltd.

[24] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S.
Fahl. 2017. Stack Overflow Considered Harmful? The Impact of Copy
Paste on Android Application Security. In IEEE Symp. on Security and
Privacy. https://doi.org/10.1109/SP.2017.31

[25] S. Garfinkel and H. R. Lipford. 2014. Usable Security: History, Themes,
and Challenges. Synthesis Lectures on Information Security, Privacy,
and Trust 5, 2 (2014).

[26] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke, Christian Stran-
sky, Sebastian Möller, Yasemin Acar, and Sascha Fahl. 2018. Developers
Deserve Security Warnings, Too: On the Effect of Integrated Security
Advice on Cryptographic API Misuse. In Fourteenth Symposium on
Usable Privacy and Security (SOUPS 2018). USENIX Association, Balti-
more, MD, 265–281. https://www.usenix.org/conference/soups2018/
presentation/gorski

[27] Government of Canada. 2018. SME Research and Statistics. http:
//www.ic.gc.ca/eic/site/061.nsf/eng/Home. [Accessed June-2018].

[28] M. Green and M. Smith. 2016. Developers are Not the Enemy!: The
Need for Usable Security APIs. IEEE Security Privacy 14, 5 (2016).
https://doi.org/10.1109/MSP.2016.111

[29] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier.
2016. Toward Large-Scale Vulnerability Discovery Using Machine
Learning. In ACM Conf. on Data and Application Security and Privacy.
12. https://doi.org/10.1145/2857705.2857720

[30] H. Assal. 2018. The Human Dimension of Software Security and Factors
Affecting Security Processes. Carleton University.

[31] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. 2008. Pacemakers
and Implantable Cardiac Defibrillators: Software Radio Attacks and

Zero-Power Defenses. In IEEE Symp. on Security and Privacy (SP).
https://doi.org/10.1109/SP.2008.31

[32] C. Herley and P. C. v. Oorschot. 2017. SoK: Science, Security and
the Elusive Goal of Security as a Scientific Pursuit. In IEEE S & P.
https://doi.org/10.1109/SP.2017.38

[33] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. 2004.
Securing Web Application Code by Static Analysis and Runtime Pro-
tection. In WWW. ACM, 13. https://doi.org/10.1145/988672.988679

[34] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. 2013. Why
don’t software developers use static analysis tools to find bugs?. In
35th International Conference on Software Engineering (ICSE). 672–681.
https://doi.org/10.1109/ICSE.2013.6606613

[35] N. Jovanovic, C. Kruegel, and E. Kirda. 2006. Pixy: a static analysis tool
for detecting Web application vulnerabilities. In IEEE S & P. https:
//doi.org/10.1109/SP.2006.29

[36] H. F. Kaiser. 1970. A Second Generation Little Jiffy. Psychometrika
(1970). https://doi.org/10.1007/BF02291817

[37] H. F. Kaiser and J. Rice. 1974. Little Jiffy, Mark IV. Educational
and Psychological Measurement 34, 1 (1974). https://doi.org/10.1177/
001316447403400115

[38] T. D. LaToza and B. A. Myers. 2010. On the Importance of Under-
standing the Strategies That Developers Use. In CHASE. ACM, 4.
https://doi.org/10.1145/1833310.1833322

[39] J. Lazar, J. H. Feng, and H. Hochheiser. 2010. Research methods in
human-computer interaction. John Wiley, Hoboken, NJ.

[40] H. Lipford, T. Thomas, B. Chu, and E. Murphy-Hill. 2014. Interactive
Code Annotation for Security Vulnerability Detection. In ACM SIW. 6.
https://doi.org/10.1145/2663887.2663901

[41] Microsoft Corp. [n. d.]. Microsoft Security Development Lifecycle.
https://www.microsoft.com/en-us/sdl. [Accessed June-2016].

[42] A. Naiakshina, A. Danilova, C. Tiefenau, and M. Smith. 2018. De-
ception Task Design in Developer Password Studies: Exploring a Stu-
dent Sample. In Fourteenth Symposium on Usable Privacy and Secu-
rity (SOUPS). USENIX Association, Baltimore, MD, 297–313. https:
//www.usenix.org/conference/soups2018/presentation/naiakshina

[43] Anton J Nederhof. 1985. Methods of coping with social desirability
bias: A review. European journal of social psychology 15, 3 (1985),
263–280.

[44] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl. [n.
d.]. A Stitch in Time: Supporting Android Developers inWritingSecure
Code. In Conf. on Computer and Communications Security. ACM, 13.
https://doi.org/10.1145/3133956.3133977

[45] V. Okun, A. Delaitre, and P. E. Black. 2013. Report on the Static Analysis
Tool Exposition (SATE) IV. In NIST Special Publication 500-297.

[46] D. Oliveira, T. Lin, M. Rahman, R. Akefirad, D. Ellis, E. Perez, R. Bobhate,
L. DeLong, J. Cappos, and Y. Brun. 2018. API Blindspots: Why Experi-
enced Developers Write Vulnerable Code. In Fourteenth Symposium on
Usable Privacy and Security (SOUPS 2018). USENIX Association, Balti-
more, MD, 315–328. https://www.usenix.org/conference/soups2018/
presentation/oliveira

[47] D. Oliveira, M. Rosenthal, N.Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang.
2014. It’s the Psychology Stupid: How Heuristics Explain Software
Vulnerabilities and How Priming Can Illuminate Developer’s Blind
Spots. In ACSAC. ACM, 10. https://doi.org/10.1145/2664243.2664254

[48] OWASP. [n. d.]. OWASP Guide Project. https://www.owasp.org/
index.php/Category:OWASPGuideProject. [Accessed Feb-2017].

[49] O. Pieczul, S. Foley, andM. E. Zurko. 2017. Developer-centered Security
and the Symmetry of Ignorance. In NSPW. ACM, 11. https://doi.org/
10.1145/3171533.3171539

[50] J. Radcliffe. 2011. Hacking Medical Devices for Fun and Insulin: Break-
ing theHuman SCADASystem. https://media.blackhat.com/bh-us-11/
Radcliffe/BHUS11RadcliffeHackingMedicalDevicesWP.pdf. [Accessed

http://blog.passwordresearch.com/2013/02/
https://doi.org/10.1109/ARES.2011.82
https://www.cert.org/cybersecurity-engineering/
https://www.cert.org/cybersecurity-engineering/
https://doi.org/10.1109/MSP.2004.111
https://www.equifaxsecurity2017.com
https://doi.org/10.1109/SP.2017.31
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
http://www.ic.gc.ca/eic/site/061.nsf/eng/Home
http://www.ic.gc.ca/eic/site/061.nsf/eng/Home
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1109/SP.2008.31
https://doi.org/10.1109/SP.2017.38
https://doi.org/10.1145/988672.988679
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1109/SP.2006.29
https://doi.org/10.1007/BF02291817
https://doi.org/10.1177/001316447403400115
https://doi.org/10.1177/001316447403400115
https://doi.org/10.1145/1833310.1833322
https://doi.org/10.1145/2663887.2663901
https://www.microsoft.com/en-us/sdl
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3133956.3133977
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://doi.org/10.1145/2664243.2664254
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://doi.org/10.1145/3171533.3171539
https://doi.org/10.1145/3171533.3171539
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf

Feb-2017].
[51] Rapid 7 Community. 2015. #IoTsec Disclosure: 10 New

Vulnerabilities for Several Video Baby Monitors. https:
//community.rapid7.com/community/infosec/blog/2015/09/02/
iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors.
[Accessed Feb-2017].

[52] H.-S. Rhee, Y. U. Ryu, and C.-T. Kim. 2012. Unrealistic optimism
on information security management. Computers & Security (2012).
https://doi.org/10.1016/j.cose.2011.12.001

[53] R. M. Ryan and E. L. Deci. 2000. Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being.
American Psychologist 55, 1 (2000).

[54] R. Sass. 2016. How to Balance Between Security and Agile Develop-
ment the Right Way. https://resources.whitesourcesoftware.com/
blog-whitesource/how-to-balance-between-security-and-agile-
development-the-right-way. [Accessed May-2018].

[55] R. Seacord. 2011. Top 10 secure coding practices. https:
//www.securecoding.cert.org/confluence/display/seccode/Top+10+
Secure+Coding+Practices. [Accessed Feb-2017].

[56] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford.
2015. Questions Developers Ask While Diagnosing Potential Se-
curity Vulnerabilities with Static Analysis. In JESEC/FSE. ACM, 12.
https://doi.org/10.1145/2786805.2786812

[57] J. Smith, B. Johnson, E. Murphy-Hill, B. T. Chu, and H. Richter. 2018.
How Developers Diagnose Potential Security Vulnerabilities with a
Static Analysis Tool. IEEE Transactions on Software Engineering (2018).
https://doi.org/10.1109/TSE.2018.2810116

[58] J. P. Stevens. 2002. Applied multivariate statistics for the social sciences.
New Jersey: Lawrance Erlbaum Association.

[59] T. Thomas, B. Chu, H. Lipford, J. Smith, and E. Murphy-Hill. 2015. A
study of interactive code annotation for access control vulnerabilities.
In IEEE Symp. on Visual Languages and Human-Centric Computing.
https://doi.org/10.1109/VLHCC.2015.7357200

[60] T. W. Thomas, H. Lipford, B. Chu, J. Smith, and E. Murphy-Hill. 2016.
What Questions Remain? An Examination of How Developers Under-
stand an Interactive Static Analysis Tool. In Symp. on Usable Privacy
and Security (SOUPS). USENIX Association.

[61] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford. 2018. Security
During Application Development: An Application Security Expert
Perspective. In Conf. on Human Factors in Computing Systems. ACM,
Article 262, 12 pages. https://doi.org/10.1145/3173574.3173836

[62] M. A. Tremblay, C. M. Blanchard, S. Taylor, L. G. Pelletier, and M.
Villeneuve. 2009. Work Extrinsic and Intrinsic Motivation Scale: Its
value for organizational psychology research. Canadian Journal of
Behavioural Science 41, 4 (2009).

[63] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. 2014. ALETHEIA:
Improving the Usability of Static Security Analysis. In ACM SIGSAC
Conference on Computer and Communications Security (CCS). 13. https:
//doi.org/10.1145/2660267.2660339

[64] S. Türpe. 2016. Idea: Usable Platforms for Secure Programming–Mining
Unix for Insight and Guidelines. In Engineering Secure Software and
Systems. Springer Int. Publishing.

[65] N. D. Weinstein and W. M. Klein. 1996. Unrealistic Optimism: Present
and Future. Journal of Social and Clinical Psychology (1996).

[66] C. Weir, A. Rashid, and J. Noble. 2017. I’d Like to Have an Argument,
Please: Using Dialectic for Effective App Security. European Workshop
on Usable Security (EuroUSEC) (2017).

[67] J. Witschey, S. Xiao, and E. Murphy-Hill. 2014. Technical and Personal
Factors Influencing Developers’ Adoption of Security Tools. In ACM
Workshop on Security Information Workers (SIW). 4. https://doi.org/
10.1145/2663887.2663898

[68] I. M.Y.Woon andA. Kankanhalli. 2007. Investigation of IS professionals’
intention to practise secure development of applications. International
Journal of Human-Computer Studies 65, 1 (2007).

[69] G. Wurster and P. C. van Oorschot. 2008. The Developer is the Enemy.
In New Security Paradigms Workshop (NSPW). ACM, 9.

[70] S. Xiao, J. Witschey, and E. Murphy-Hill. 2014. Social Influences on
Secure Development Tool Adoption: Why Security Tools Spread. In
CSCW. ACM, 12. https://doi.org/10.1145/2531602.2531722

[71] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton. 2011. ASIDE: IDE
Support for Web Application Security. In Annual Computer Security
Applications Conference (ACSAC). ACM, 10. https://doi.org/10.1145/
2076732.2076770

[72] J. Xie, H. Lipford, and B.-T. Chu. 2012. Evaluating Interactive Support
for Secure Programming. In CHI Conference on Human Factors in Com-
puting Systems. ACM, 10. https://doi.org/10.1145/2207676.2208665

[73] J. Xie, H. R. Lipford, and B. Chu. 2011. Why do programmers make
security errors?. In VL/HCC. IEEE.

[74] F. Yamaguchi, F. Lindner, and K. Rieck. 2011. Vulnerability Extrapola-
tion: Assisted Discovery of Vulnerabilities Using Machine Learning.
In USENIX Conference on Offensive Technologies (WOOT). 1.

https://community.rapid7.com/community/infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors
https://community.rapid7.com/community/infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors
https://community.rapid7.com/community/infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors
https://doi.org/10.1016/j.cose.2011.12.001
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-balance-between-security-and-agile-development-the-right-way
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-balance-between-security-and-agile-development-the-right-way
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-balance-between-security-and-agile-development-the-right-way
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1109/TSE.2018.2810116
https://doi.org/10.1109/VLHCC.2015.7357200
https://doi.org/10.1145/3173574.3173836
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/2663887.2663898
https://doi.org/10.1145/2663887.2663898
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1145/2076732.2076770
https://doi.org/10.1145/2076732.2076770
https://doi.org/10.1145/2207676.2208665

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Survey Analysis
	Factor Analysis

	5 Results
	Developers' Work Motivation
	Developers' Mental Models of Software Security
	Behaviours and Attitudes
	Experiencing Security Issues
	RQ1: how software security fits in the *SDLC.
	RQ2: Security Motivators and Deterrents

	6 RQ3: Effect of Different Characteristics on Software Security
	7 Discussion
	8 Limitations
	9 Conclusion and Future Work
	10 Acknowledgments
	References

