
THE HUMAN DIMENSION OF SOFTWARE SECURITY AND

FACTORS AFFECTING SECURITY PROCESSES

by

Hala Assal

A thesis submitted to

the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

School of Computer Science

at

CARLETON UNIVERSITY

Ottawa, Ontario

August, 2018

© Copyright by Hala Assal, 2018

Abstract

Usable security for software developers is a research direction that is in its early stages.

Even though developers typically have technical expertise, they are not necessarily

security experts and need support when dealing with security. This thesis focuses on

the human aspect of software security within the overall development process. The

research employes mixed methods, including Cognitive Walkthrough studies, inter-

views, and an online survey study. We started by studying usability issues in code

analysis tools, and designed a visual analysis environment to support collaboration

between team members and exploration during security analysis of source code. How-

ever, while working on this project, we recognized that the software security problem

is a larger one, relating to the overall process of integrating security in the Software

Development Lifecycle. Thus, through 13 interviews and an online survey with 123

software developers, we explored real-life software security practices, how developers

acquire security knowledge, and the motivators and deterrents to software security.

Based on our empirical studies, we identified recommendations that can help support

developers handle security throughout the Software Development Lifecycle.

Our qualitative and quantitative analyses showed varying approaches to software

security, and clear discrepancies between existing and best practices. Through ex-

ploring developers’ motivations towards software security, we identified both extrinsic

and intrinsic motivations. We found that acting towards software security volition-

ally and for reasons extending beyond mandates can lead to better security processes

and better developer-engagement in these processes. Particularly, our studies showed

that when the different entities involved in the Software Development Lifecycle com-

municate and collaborate, and when security is perceived as a common and shared

responsibility, this can positively influence software security, e.g., by promoting in-

ternal motivations which are associated with improved engagement and cognitive

abilities. Towards promoting the internalization of software security, we proposed a

human-oriented model to describe how external software security motivations can be

internalized. Our model highlights the interplay between security knowledge, team

collaboration, and internal motivations to security.

ii

Acknowledgements

Working on this thesis was a wonderful journey with its fair share of ups and downs.

I would like to express my gratitude to all those who have supported me throughout

this journey.

To my thesis supervisor, Sonia Chiasson, for her continuous support and guidance,

and for her insights that helped elevate the quality of this research. Thank you Sonia

for always being there, especially in the many sleepless nights before deadlines, and

for being a friend, besides being a thesis supervisor.

Thanks to the members of my committee, Heather Lipford, Timothy Lethbridge,

Alejandro Ramirez, and Robert Biddle whose expertise, guidance, and feedback

helped shape this thesis. I would especially like to thank Robert for his close men-

toring, enthusiasm during our many discussions, and support from the early years of

my PhD and throughout my journey.

Thanks to participants in our studies who have volunteered their valuable time

to share their experiences and offer their insights. Your contributions are key to

this work. Also, thanks to my colleagues at the CHORUS lab for their insights and

feedback, as well as all the fun discussions we had at the lab.

I would also like to express my deepest thanks to my family for their love and sup-

port throughout my studies. To my parents, Fouad and Khairia, for always pushing

me to go the extra mile and being the best that I could be. To Walid and Nadia, my

wonderful brother and sister, for all their love and understanding. To my in laws for

always believing in me and cheering me on. To my husband AbdelRahman, to whom

I cannot even begin to express my gratitude. Thank you for all the proofreading,

discussions, and insights. Thank you for always being there, keeping my spirits up,

and for your unwavering love and motivational support. And finally, thank you my

wonderful son Hamza for being so understanding during all the times that mummy

had to work and for pretending to work on a thesis while I worked on mine.

iii

Table of Contents

Abstract ii

Acknowledgements iii

List of Tables ix

List of Figures x

List of Acronyms xii

Chapter 1 Introduction 1

1.1 Scope . 1

1.2 Motivation . 2

1.3 Research Question . 4

1.4 Contributions . 4

1.5 Thesis Outline . 6

1.6 Related Publications . 7

Chapter 2 Background and Related Work 8

2.1 Software Engineering . 8

2.2 Security Initiatives . 9

2.3 Human Factors in Software Engineering 11

2.3.1 Factors Influencing Developers’ Practices 11

2.3.2 Motivations for Conducting Code Reviews 12

2.3.3 Reasons for Use and Under-Use of Static-code Analysis Tools . 13

2.4 Human Factors in Software Security 16

2.4.1 Security Tool Adoption . 17

2.4.2 Developers’ Abilities and Expertise 19

iv

2.4.3 Improving and Introducing New Security Tools and Method-

ologies . 20

2.5 Software Visualizations . 22

2.6 Research Gap Analysis . 25

2.7 Background on Activity Theory and Self-Determination Theory . . . 25

2.7.1 Activity Theory . 26

2.7.2 Self-Determination Theory . 27

Chapter 3 Visual Representation of Source Code Vulnerabilities 30

3.1 Using the Cognitive Dimensions Framework for Usability Evaluation . 31

3.2 Using the Cognitive Walkthrough Methodology for Usability Evaluation 33

3.3 FindBugs’ Study . 34

3.3.1 Study Design . 34

3.3.2 Results . 36

3.4 Cesar . 38

3.5 Cesar’s Study . 41

3.5.1 Study Design . 41

3.5.2 Cesar’s Strengths . 43

3.6 Future Enhancements . 47

3.7 Discussion . 50

3.8 Limitations . 52

3.9 Summary . 53

Chapter 4 Security in the Software Development Lifecycle 54

4.1 Study Design and Methodology . 55

4.1.1 Interview Study Design . 55

4.1.2 Participant Demographics . 55

4.1.3 Analysis . 56

4.1.4 Limitations . 58

4.2 Results: Security in Practice . 59

4.2.1 Exploring Practices by Development Stage 61

v

4.2.2 The adopters vs. the Inattentive 75

4.3 Software Security Best Practices . 78

4.4 Interpretation of Results . 80

4.4.1 Current Practices versus Best Practices 80

4.4.2 Factors Affecting Security Practices 81

4.4.3 Future Research Directions . 84

4.5 Conclusion . 85

Chapter 5 Security Knowledge and Motivation 86

5.1 Using Grounded Theory for Analysis 87

5.1.1 Researcher Bias . 89

5.2 Knowledge Acquisition Taxonomy . 89

5.2.1 Formal Learning . 92

5.2.2 Semi-Formal Learning . 95

5.2.3 Informal Learning . 98

5.2.4 Insights Based on the Taxonomy 100

5.2.5 Additional Use for the Knowledge Acquisition Taxonomy . . . 103

5.3 Motivation for Software Security . 105

5.3.1 Amotivation . 107

5.3.2 Intrinsic and Extrinsic Motivations 109

5.4 Internalizing Software Security . 111

5.5 Summary . 115

Chapter 6 Survey 116

6.1 Survey Methodology . 116

6.1.1 Survey Design . 117

6.1.2 Testing the Survey Tool . 118

6.1.3 Participant Recruitment . 119

6.1.4 Data Quality . 119

6.1.5 Participant Demographics . 121

6.2 Survey Analysis . 121

vi

6.2.1 Addressing the Research Questions 121

6.2.2 Factor Analysis . 122

6.2.3 Developers’ Work Motivation 123

6.2.4 Developers’ Mental Models of Software Security 123

6.3 Security in the Software Development Lifecycle 124

6.3.1 Efforts Towards Security . 124

6.3.2 Behaviours and Attitudes . 125

6.3.3 Experiencing Security Issues 127

6.3.4 Strategies to Address Software Security 129

6.4 Motivators and Deterrents to Security 132

6.4.1 Software Security Motivators 132

6.4.2 Deterrents to Software Security 136

6.5 Effect of Different Characteristics on Software Security 139

6.5.1 Development Methodology . 140

6.5.2 Company Size . 142

6.5.3 Test-Driven Development . 142

6.6 Discussion . 143

6.6.1 RQ1: How Does Security Fit in the Development Lifecycle in

Real Life? . 144

6.6.2 RQ2: What are The Current Motivators and Deterrents to De-

velopers Paying Attention to Security? 145

6.6.3 RQ3: Does the Development Methodology, Company Size, or

Adopting Test-Driven Development Influence Software Security? 146

6.7 Limitations . 146

6.8 Conclusion . 147

Chapter 7 Discussion, Future work, and Conclusions 148

7.1 Thesis Contributions . 148

7.2 Insights on Conducting Studies with Developers 150

vii

7.3 Answering the Thesis Research Question: Recommendations for Sup-

porting Developers . 152

7.4 Future Research Directions . 156

7.5 Conclusion . 158

Bibliography 159

Appendix A Interview Script 175

Appendix B Motivations and Amotivations for Software Security 177

Appendix C Developers’ Survey 184

Appendix D Types of Software Developed by Survey Participants 194

viii

List of Tables

4.1 Qualitative study participant demographics 56

4.2 The degree of security in the SDLC. 60

4.3 Summary of themes emerging from the qualitative analysis. . . 76

5.1 Knowledge Acquisition Taxonomy 90

5.2 Distribution of participants mentioning learning opportunities

fitting in each cell of the Knowledge Acquisition Taxonomy . . 92

6.1 Summary of survey study participant demographics 120

6.2 Summary of statistical tests for the survey study 121

6.3 Within subject statistical analysis comparing security efforts in

SDLC stages . 126

6.4 Number of participants indicating that security is important and

that their software is an interesting target for attackers 127

6.5 Factor analysis for software security strategies 131

6.6 Factor analysis for motivation 134

6.7 Factor analysis for security deterrents 137

6.8 Between subject statistical analysis of the effect of development

methodology, company size, and adopting TDD on software se-

curity . 141

B.1 Motivations and Amotivations of software security 178

ix

List of Figures

2.1 Microsoft Security Development Lifecycle (SDL) 10

2.2 Example of a call graph visualization 23

2.3 Example visualization for class dependency 23

2.4 Engeström’s triangle . 26

2.5 Third generation activity theory with two interacting activity

systems . 27

2.6 The self-determination continuum 28

3.1 Screenshot of FindBugs interface 35

3.2 The setup for usability studies in Chapter 3 36

3.3 Cesar’s treemap visualizing select defect categories 40

3.4 Cesar’s visualization, details, and source code panes. 41

3.5 Example for a secondary visualization for Cesar 48

3.6 The relation between Cognitive Dimensions and four select ob-

jectives of a Collaborative Security Code Review (CSCR) tool. 50

4.1 Security adopters: developer testing abstraction 58

5.1 Axial coding process for interview data. 88

5.2 Analyzing motivations and amotivations for software security . 105

5.3 The self-determination continuum of software security 107

5.4 Internalizing software security model 112

6.1 Explanation differentiating between software security and secu-

rity functions in the survey. 118

6.2 Software security efforts in the Software Development Lifecycle

(SDLC) . 125

6.3 Participants’ opinion of their teams. 126

6.4 Satisfaction with teams’ procedures 127

6.5 Likelihood of the existence of vulnerabilities in team’s code . . 127

x

6.6 Types of security issues experienced by participants’ companies. 128

6.7 Long term effect of experiencing security issues on awareness

and concern for security . 128

6.8 Strategies for handling software security 130

6.9 Strategies for handling software security after factor analysis . 132

6.10 Software security motivators 133

6.11 Motivations for software security after factor analysis 135

6.12 Deterrents to software security. 136

6.13 Software security deterrents after factor analysis. 140

D.1 Types of software developed by survey participants 194

xi

List of Acronyms

API Application Programming Interface.

BSIMM Building Security In Maturity Model.

CSCR Collaborative Security Code Review.

CTF Capture The Flag.

CVE Common Vulnerabilities and Exposures.

HCI Human-Computer Interaction.

IDE Integrated Development Environment.

IoT Internet of Things.

IT Information Technology.

KMO Kaiser Meyer-Olkin.

LE Large Enterprise.

NASA National Aeronautics and Space Administration.

NIST National Institute of Standards and Technology.

NVD National Vulnerability Database.

OOP Object-oriented Programming.

OWASP Open Web Application Security Project.

QA Quality Analysis.

xii

SAMM Software Assurance Maturity Model.

SAT Static-code Analysis Tool.

SDL Security Development Lifecycle.

SDLC Software Development Lifecycle.

SDT Self-Determination Theory.

SME Small and Medium Enterprise.

TDD Test-Driven Development.

UI User Interface.

US-CERT Department of Homeland Security’s United States Computer Emergency

Readiness Team.

W-SDI Work Self-Determination Index.

WEIMS Work Extrinsic and Intrinsic Motivation Scale.

xiii

Chapter 1

Introduction

Usable security is an interdisciplinary field that combines various fields of research

including computer security, Human-Computer Interaction (HCI), cognitive science,

and psychology. The goal of usable security can be described as: designing secu-

rity systems that users can use comfortably and without making dangerous errors—

designing systems that are usable without compromising on security [44, 174]. To

achieve this, usable security focuses on the human factors of computer security, in-

cluding human behaviour and cognition.

Typical end-users have been the primary focus of usable security research [40,130].

These users have little computer security knowledge and may be reluctant to perform

security tasks. However, recent work has begun to focus on software developers

as users who also need support when dealing with the implementation of software

that adequately addresses privacy and security [13, 71, 132]. Developers, although

considered experts in their own domain, are typically not security experts [71]. They

sometimes make mistakes that affect the privacy and security of their whole user-

base [13, 71].

This thesis advances the body of usable security research for software develop-

ers, through proposing a new approach for source code security analysis that encour-

ages collaboration and exploration; identifying discrepancies between real-life security

practices and best practices, and identifying reasons for such discrepancies; and ex-

ploring factors that could influence developers’ security processes, such as knowledge

and motivation.

1.1 Scope

Detecting software vulnerabilities is a classic problem in computer security. A soft-

ware vulnerability can be defined as “a flaw or weakness in system security procedures,

1

2

design, implementation, or internal controls that could be exercised (accidentally trig-

gered or intentionally exploited) and result in a security breach or a violation of the

system’s security policy” [157]. Thus, exploiting vulnerabilities negatively affects one

or more of the pivotal components of security: confidentiality, integrity, and availabil-

ity [87]. We note that vulnerabilities could be unintentional or could be introduced

to a system out of malice. For the work presented herein, we focus on supporting

developers avoid unintentional vulnerabilities; malicious developers are thus out of

the scope of this work.

Software security focuses on the resistance of applications to vulnerability exploita-

tion. This is different from security functions, which can be expressed as functional

requirements, such as authentication [182]. In this thesis, we focus on ensuring soft-

ware security with special focus on the human in the development loop. Security

functions are out of the scope of this thesis. Thus, terms such as “security” and

“secure” used herein refer to software security (how secure a software application is

against unintentional triggers or malicious exploitations of vulnerabilities).

In addition, this thesis focuses on the software security process and understand-

ing how the human actors (e.g., developers) deal with, and influence, this process.

Although we do not focus on technologies to support secure software development,

this thesis can help inform the design of these technologies.

1.2 Motivation

Historically, security has been an afterthought in software development, where the

focus was mainly on functionality [166]. However, increasing threats led to acknowl-

edging the importance of addressing security in the development lifecycle [66, 166].

Major software companies are taking the initiative to integrate security in the SDLC,

starting from the early stages. For example, Google has an independent Security

Team responsible for aiding security reviews during the design and implementation

phases, as well as providing ongoing consultation on relevant security risks and their

remedies [6]. Microsoft has been following a security-oriented software development

process since 2004. The Microsoft Security Development Lifecycle (SDL) introduces

3

security early in the development and throughout the different stages of the tradi-

tional SDLC [104]. In addition, several initiatives for implementing a secure SDLC

have been proposed [62] (discussed more in Section 2.2). Integrating security in the

SDLC from the early stages when vulnerabilities are less expensive to fix [39] has

shown improved security outcomes compared to when security was viewed as an ad-

ditional task [104].

Despite these efforts, software vulnerabilities persist [116]. With increasing con-

nectivity and progress towards the Internet of Things (IoT), threats have changed [77]

and software security is often critical. In addition to vulnerabilities in traditional com-

puting systems (e.g., Heartbleed [41] and Shellshock [160]), vulnerabilities are found

in devices and applications that are not necessarily considered security-sensitive, such

as baby monitors [136], children’s toys [155], and medical devices [74,107,135]. Also,

the threat is no longer limited to large enterprises, even Small and Medium Enter-

prises (SMEs) are increasingly becoming targets of cyberattacks [153].

The majority of existing usable security research for software security mainly fo-

cuses on a single aspect of the process: proposing and improving security tools [13].

Little research [30] addresses the human factors of usable security, such as develop-

ers’ attitudes, behaviours, and motivations towards software security. This thesis

highlights the role usable security research could play towards supporting security

throughout the SDLC by focusing on the human factors. Existing usable security

literature is discussed in Section 2.4, and the research gap is discussed in Section 2.6.

In this thesis, rather than focusing on a specific SDLC stage, we look at the devel-

opment lifecycle as a whole. We explore current approaches taken towards software

security throughout the development lifecycle and how they compare to security best

practices. In addition, we explore developers’ approaches to performing their tasks,

factors that motivate addressing software security, factors impeding the implementa-

tion of best practices, and barriers to security efforts.

4

1.3 Research Question

The research began with a focus on improving the usability of source code an-

alyzers to support developers analyze their code security. However, we recognized

that the problem of software security extends beyond security tools. Thus, we then

focused our efforts on the overall security process. In particular, this thesis explores

the process of handling software security, with a focus on the human aspect, rather

than the technological aspect.

We aim to improve the state of software security by understanding and supporting

the human in the development loop. The main research question is:

How can we support the human dimension of software security through-

out the SDLC by better understanding factors that motivate, or impede,

security efforts?

To address this question, we take an empirical approach that includes both qualitative

and quantitative methods. This thesis has the following four main objectives.

Objective 1 Supporting collaboration and exploration during source code security

analysis.

Objective 2 Exploring how software security fits in the development lifecycle in

real-life.

Objective 3 Identifying the means through which developers acquire security knowl-

edge.

Objective 4 Exploring motivations and deterrents to software security.

1.4 Contributions

This thesis addresses a research direction that is currently understudied by the usable

security community. We contribute to the understanding of security practices, how

they compare to best practices, and factors that influence the process. Our approach

5

is user-centered with the aim to understand, encourage, and support the integration

of security throughout the different stages of the SDLC. The main contributions of

this thesis are as follows.

• We studied usability issues facing developers while using code analyzers by

evaluating a popular open-source Static-code Analysis Tool (SAT). We then

designed a prototype, which offers developers and testers a visual environment

to support their analysis of source code vulnerabilities. The usability evaluation

of our prototype showed promising results in terms of supporting collaboration

amongst developers and encouraging discussion and exploration of potential

issues. We also provided general recommendations to guide future designs of

code review tools to enhance their usability.

• We conducted an interview study and an online survey study, with developers

currently employed in industry, to study different aspects of software security,

including the degree of integration of security in the SDLC in real life. We found

that developers have varying approaches to software security. In addition, the

interviews revealed considerable deviations from best practices in real life. The

survey data implied that developers are not explicitly ignoring security, but

rather consider it part of their responsibilities and in some cases, they even find

their teams’ security processes unsatisfactory. Through our analyses, we identi-

fied factors that influence the adoption of security best practices, e.g., company

culture, security knowledge, external pressure, and experiencing security issues.

• We further analyzed our interview data to explore how developers acquire secu-

rity knowledge. Through our analysis, we developed a taxonomy of the differ-

ent opportunities for acquiring security knowledge identified in our data. The

learning opportunities varied in their formality and the developer’s motivation

in initiating them. Learning as a by-product of developers’ tasks was more

common than other SDLC-independent learning opportunities. We also discuss

how some of the learning opportunities we have identified could help harmonize

project teams and bridge the gap between developers and security experts.

• We explored factors that could influence developers motivation towards software

6

security. This was done through analyzing our interview and online survey

data. Several factors led developers to become amotivated towards software

security, such as being unequipped to handle security tasks. In addition, we

identified different motivations to software security that vary in their degree

of internalization (whether they are self- or externally-driven). We discuss the

importance of focusing on internal motivations to promote software security.

• We propose a human-oriented model to describe how external motivations to

software security can be transformed into internal motivations. The model rep-

resents successful strategies for motivating software security, while overcoming

factors that could lead to amotivation.

1.5 Thesis Outline

This thesis uses the first person plural prose as the work presented herein was super-

vised by Prof. Sonia Chiasson. This thesis is organized as follows. Chapter 2 presents

current security initiatives for supporting the integration of security in the SDLC. It

also provides background and discusses related work addressing human factors in

software engineering and software security, as well relevant software visualizations

research. The gap in research is also discussed in this chapter. Chapter 3 presents

our usability evaluation of a popular open-source SAT. We design and prototype our

visual analysis environment to support collaboration between developers and testers

when analyzing the security of their code. This chapter also presents general guide-

lines that could help toolsmiths design more usable code analysis tools. Chapter 4

presents our qualitative study investigating software security in practice. We explore

security practices employed by development teams and identify pitfalls in the process.

In Chapter 5, we further analyze the interviews to explore how developers acquire

security knowledge and what motivates them to address software security. We also in-

troduce our model for internalizing software security. Chapter 6 introduces our online

survey study, where we further explore our findings from the previous chapters with a

bigger participant sample. In Chapter 7, we present our final discussion, conclusion,

and future work.

7

1.6 Related Publications

Work presented in this thesis has been published in peer-reviewed academic venues.

• Hala Assal and Sonia Chiasson. Security in the Software Development Lifecy-

cle. In The 14th Symposium on Usable Privacy and Security (SOUPS), pages

281–296, 2018. USENIX. [full paper]

• Hala Assal and Sonia Chiasson. Motivations and Amotivations for Software

Security. In SOUPS Workshop on Security Information Workers (WSIW),

2018. USENIX. [workshop paper]

• Hala Assal, Sonia Chiasson, and Robert Biddle. Cesar: Visual Representation

of Source Code Vulnerabilities. In IEEE Symposium on Visualization for Cyber

Security (VizSec), pages 1–8, Oct 2016. [full paper]

• Hala Assal. Collaborative Security Code Review. In Proceedings of the 14th

International Conference on Mobile and Ubiquitous Multimedia (MUM), pages

439–444, 2015. ACM. [extended abstract]

• Hala Assal, Jeff Wilson, Sonia Chiasson, and Robert Biddle. Collaborative Se-

curity Code Review: Towards Aiding Developers Ensure Software-Security. In

The 11th Symposium on Usable Privacy and Security (SOUPS), 2015. USENIX.

[extended abstract]

Chapter 2

Background and Related Work

This chapter presents background and relevant research on software engineering, soft-

ware security, and human factors. We also discuss the gap in research in Section 2.6.

Additionally, Section 2.7 provides brief background on theories used in this thesis to

explain our results.

2.1 Software Engineering

Software engineering is “the process of solving customers’ problems by the systematic

development and evolution of large, high-quality software systems within cost, time

and other contraints” [94]. The Software Development Lifecycle (SDLC) can be

defined as: “a conceptual framework or process that considers the structure of the

stages involved in the development of an application from its initial feasibility study

through to its deployment in the field and maintenance” [140]. Different processes,

or SDLC models, have been created, such as waterfall, rapid prototyping, and agile

software development [140,152], each with its own approach of structuring the SDLC

stages. Regardless of the software process, the SDLC must include fundamental

design, implementation, and testing activities, including “software validation” [152].

As it is the focus of Chapter 3, we will now briefly discuss some software validation

methods that help reveal code defects.

Software testing can be categorized as Black-box (e.g., fuzz testing) or White-box

(e.g., static analysis) testing [152]. Testers using the black-box method investigate

the functionality of the software without knowledge of its internal structure or hav-

ing access to its source code. White-box testing aims to uncover hidden errors by

examining every visible path of the source code.

Inspection is a white-box method of software validation. The formal code inspec-

tion method proposed by Fagan [58] involved manually inspecting source code line

8

9

by line. Despite being a cumbersome and expensive process, evidence has shown the

merit of code inspection on the quality of software [28]. Nowadays, a more lightweight

version of this method is adopted by organizations such as Microsoft and Google to

make use of its benefits while avoiding the shortcomings. This informal tool-based

inspection method is referred to as Modern Code Review [28] (henceforth, code re-

view).

Static code analysis is sometimes performed during code review [127]. Static-

code Analysis Tools (SATs) automate the process of finding defects using static-code

analysis. However, existing SATs are not sound ; they build a non-exact model of

the code to be analyzed and this approximation inevitably leads to false negatives. A

false negative is when a vulnerability exists in the program, yet the tool fails to detect

it. On the other hand, false positives, another problem with SATs, is when the tool

mistakenly reports a vulnerability. For example, these could occur when the program

interacts with an external system through which the tool cannot trace the flow of

data [17]. Thus, SATs require human inspection of potential defects; SAT users need

to inspect analysis reports produced by the tool in order to determine whether the

discovered defects are true problems or false positives.

Security has historically been outside the focus of the development lifecycle [166].

Recently, with increasing and constantly changing threats, the community recognized

the importance of integrating security in the SDLC [66,166]. In the following section,

we discuss initiatives proposing the integration of security throughout the SDLC.

2.2 Security Initiatives

Processes and recommendations for integrating security in the SDLC have been pro-

posed by major software companies and other organizations. We now give a brief

background on the most notable ones.

Security Development Lifecycle (SDL).

The first initiative encouraging the integration of security in the SDLC from the

early stages was introduced by Microsoft. In 2004, Microsoft’s SDL [104] was re-

leased [66]. It has 7 stages (Figure 2.1). The first stage focuses on providing security

training to entities involved in the development process (e.g., developers and testers),

10

Figure 2.1: Microsoft Security Development Lifecycle [104].

whereas the final stage focuses on response in case of a security incident. The re-

maining five stages cover the main stages of the development lifecycle; they consists

of 16 security practices and can be employed regardless of the platform. The SDL

recommends specific references, tools, and sometimes provides training material.

Building Security In Maturity Model (BSIMM). First introduced in 2009

and currently maintained by Cigital 1, the Building Security In Maturity Model

(BSIMM) [2] is in its 8th iteration. The model was built by analyzing security ini-

tiatives employed by 95 software companies. BSIMM recommends 12 main security

practices. However, it does not provide explicit instructions to follow; rather, it

provides high-level insights to help companies plan their own secure development

initiative and assess their security practices in comparison to other organizations.

These two initiatives are intended for use by development companies of any size.

They provide security best practices throughout the different stages of the SDLC.

Microsoft divides its security practices into 7 phases similar to the stages of the

traditional SDLC (e.g., design and implementation), whereas BSIMM divides them

into 4 main categories (e.g., security touch points and deployment).

Open Web Application Security Project (OWASP) initiatives. Focusing

mainly on web development, OWASP published several initiatives addressing secu-

rity [121, 123–125]. The current Software Assurance Maturity Model (SAMM) [124]

supersedes an earlier initiative [121]. It recognizes 4 main classes of activities in the

SDLC and provides 3 security best practices for each. This model can assist com-

panies in integrating security in their development process, and in evaluating their

security initiatives. Additionally, the Developer Guide [123] provides architects and

developers with high-level information on security best practices, as well as specific

advice. The Testing Guide [125] focuses on best practices for testing and evaluating

1https://www.cigital.com

11

SDLC security activities.

Others. Additional resources for security best practices are also available. No-

table examples include: National Aeronautics and Space Administration (NASA)’s

Software Assurance Guidebook [113], National Institute of Standards and Technology

(NIST)’s special publication 800-64 [86], Department of Homeland Security’s United

States Computer Emergency Readiness Team (US-CERT)’s Top 10 Secure Coding

Practices [145], as well as various articles emphasizing the importance of secure de-

velopment [38,100,101,176].

Resources for software security best practices vary in their organization, as well as

their presentation style, e.g., some might focus on technical details more than others.

Previous research [108, 133, 166] emphasized the importance of devising methods to

help developers and development companies choose the set of best practices they

would follow and help them establish the security process within their organizations.

The success or failure of these processes, or any human-directed process for the matter,

depends at least partially on the human user. We discuss research looking at the

human aspect in software engineering and software security in Sections 2.3 and 2.4,

respectively.

2.3 Human Factors in Software Engineering

In this section, we present an overview of recent research focusing on specific aspects

of human factors in software engineering, namely developers’ goals, behaviours, and

personalities. Security is usually out of scope in this research, so the findings provide

context but may not necessarily apply directly to security. We present this work for

insight and completeness.

2.3.1 Factors Influencing Developers’ Practices

The software development lifecycle involves multiple stages that require different cog-

nitive processes [82]. Understanding how developers approach their different tasks

could provide insight on challenges they face, which could be useful in designing and

evaluating development tools [91, 103]. For example, developers’ frequently switch

between different tasks, thus tools and methodologies should allow reducing untimely

12

interruptions and support developers in focusing on the task at hand [103].

Previous research found multiple factors that affect developers’ practices and the

strategies they employ throughout their work day. For example, individual character-

istics such as “work style” could influence the developer’s strategy for implementing

some functionality [91]. Some developers try to get the code to work as soon as pos-

sible, regardless of whether they understand its implications; others implement only

after acquiring a full understanding of the problem and the solution.

Other factors that influence developers’ approaches to their activities include: the

type of development process, the context of use of the application they are imple-

menting, and the developers’ knowledge of the application and the programming

language [91]. Developers rely on different knowledge resources, to gain specific

knowledge they need to perform their tasks; e.g., they rely on their colleagues to

answer their questions [91] or search for information online [103]. In fact, a quarter

of developers’ work day is spent on coding-related activities (e.g., browsing for code-

related information), and another quarter is spend on collaborative activities (e.g.,

collaborating with colleagues, answering emails) [103].

2.3.2 Motivations for Conducting Code Reviews

Evaluating the effectiveness of code reviews could be done using various methods,

e.g., based on the number of errors detected during the code review, or the losses

prevented relative to the code review costs [42]. In a different direction, addressing

the human aspect, Bacchelli and Bird [28] focused on evaluating the effectiveness of

code reviews in fulfilling the developers’ goals. They explored developers’ motivations

for conducting (non-security focused) code reviews, as well as the actual outcomes of

code reviews. By comparing the motivations to the outcomes, the efficiency of the

code review could be deduced. Their study included observing Microsoft developers

in code review sessions, carrying out semi-structured interviews with these developers,

and manually inspecting discussion comments contained within code reviews.

The two most prominent motivations for developers to perform code reviews were

to find defects and to improve the code (in terms of readability, adding comments,

and removing dead code). However, developers also discussed additional motivations.

13

They explained that code reviews provided a good opportunity for learning (e.g., de-

velopers followed code reviews in order to learn about the different areas of the code

they need to modify to implement certain features), allowed for knowledge transfer

between developers and reviewers, and helped increase team awareness (e.g., devel-

opers use code reviews to keep team members aware of changes done to the code) and

enforced the concept of shared code ownership between members of the developing

team.

However, after analyzing and categorizing code review comments, the authors [28]

found that developers’ motivations do not match code review outcomes. Developers

did not spend as much time finding defects as they had expected; instead more

time was spent on “code improvement” (the most prominent category of code review

comments). “Finding code defects”, the top motivation for performing code reviews,

was only the fourth most frequent category of comments. Comments relating to

“knowledge transfer” were also found, where reviewers2 pointed developers to external

resources to gain the knowledge necessary to handle detected issues.

To increase the efficiency of code reviews in fulfilling developers’ objectives, Bac-

chelli and Bird [28] recommended integrating code analysis tools in code reviews to

automate defect-finding tasks. Static analysis tools can support developers during

code reviews by reducing the time and effort spent on reviews [129] and allowing

developers to focus on less obvious defects [28]. In addition, since their study pro-

vided evidence that code reviews involve much more than merely finding defects, the

authors emphasized the importance of providing proper support for all the different

aspects of code reviews (e.g., knowledge transfer), rather than exclusively focusing

on finding code defects.

2.3.3 Reasons for Use and Under-Use of SATs

Despite their benefits [22, 35, 39], SATs are not widely accepted by the software de-

velopment community [22, 79]. Previous research [79, 95] worked towards identifying

2The developer who carries out the code review in this study was not necessarily the author of
the code.

14

tools’ advantages and disadvantages that influence developers’ decision to use or dis-

miss them. Existing and potential features that were described by developers as the

main reasons that would motivate them to use SATs were [79]:

• Automatic defect-detection. Some developers find SATs a convenient method

to identify defects in their code. In comparison to manual line-by-line code

inspection, SATs offer an automated process, making fault detection faster and

less effortful.

• Providing support to team development efforts. Some development teams use

SATs to raise awareness of potential problems in the early stages of the develop-

ment, as well as to enforce coding standards and maintain coding styles across

teams.

• Availability in Integrated Development Environment (IDE). Developers expressed

their willingness to use SATs if they were part of their existing tools. Developers

are more likely to use these tools if they were built-in, or could be integrated in

their existing IDE.

• Customizable output. Developers consider the ability to customize SATs, to

produce an output that is most relevant to them, as one of the main factors

influencing their willingness to use these tools. Developers explained that by

customizing the tool to focus on relevant issues, the quality and volume of its

defect predictions can be significantly improved.

The main factors leading to the underuse of SATs are [79, 95]:

• The quality of tool output. SATs’ false positives are one of the main reasons

behind their underuse. Some developers see these tools as useless, especially

when they find that the number of false positives exceeds the number of true

positives. In addition, with large projects, SATs produce a large volume of

warnings that could reach thousands. Thus, with many false positives and up

to thousands of potential defects, developers find it inefficient to use these tools.

In order to accept SATs, developers need to trust that the tools are providing

them with accurate information in an efficient manner [92].

15

• Support for collaboration. Developers are reluctant to use SATs because they do

not adequately support collaboration between team members. Although these

tools could be used to enforce coding standards and styles, development teams

find that setting up and sharing tools’ settings is an unintuitive process that

usually results in confusion when the standards need to be changed. Even

though some tools (e.g., FindBugs [5]) allow developers to exchange defect

reports, this feature takes the developer out of the development environment,

and thus out of context. This causes developers to be reluctant to use this

feature, and subsequently the static-analysis tool altogether.

• Tool customization. Developers believe the quality of tool output could be

improved (e.g., to show less false positives) if they were able to customize the

tools to look for defects they care about the most. However, many existing tools

require complicated steps to customize, and yet they do not allow developers

make the customizations they want. Additionally, many tools do not allow

developers to temporarily dismiss certain warnings, or categories of warnings;

these tools only allow developers to completely turn off certain filters on a

project level. This setting could later cause problems if the developer forgets

to turn the filter back on.

• Result understandability. Developers feel that SATs do not provide enough in-

formation to assist them in assessing whether the warning is a true or false

positive. The tools fail to explain their reasons for triggering a warning; they

usually do not clearly explain what the problem is, why it is considered a prob-

lem, and how it could be fixed. Without obvious reasoning why a warning was

issued, developers could not develop trust for the analysis tool, thus lowering

the likelihood of using it for defect-detection.

• Actionable tool output. Code suggestions and quick fixes are two features many

developers miss in most existing SATs. Developers expect to be able to take

clear steps, guided by the SAT, to fix the defects it has detected. However, there

is some skepticism to the true merit of quick fixes. For example, developers

might wrongfully accept a quick fix to a false positive, without thoroughly

16

inspecting the code and the bug report, potentially leading to more problems.

If the tool does not provide actionable output, developers see more benefit if the

SAT focuses on defects discovered in newer versions of the project, especially in

large projects.

2.4 Human Factors in Software Security

Garfinkel and Lipford [65] highlighted the lack of human factors research focusing

on software developers. Green and Smith [71] discussed how developers are often

viewed as “the weakest link”—mirroring the early attitude towards end-users before

usable security research gained prominence. While developers are more technically-

experienced than typical end-users, they should not be mistaken for security ex-

perts [13, 71]. They need support when dealing with security tasks, e.g., through

developer-friendly security tools [178], programming languages that prevent security

errors [71], or guidelines to help developers avoid introducing vulnerabilities, such as

Microsoft’s NEAT and SPRUCE [65,105].

Acar et al. [13] outlined a research agenda for usable security research for software

security—a research area that is in its early stages. Their agenda includes understand-

ing developers’ attitudes and security knowledge, exploring the usability of available

security development tools, and proposing tools and methodologies to support de-

velopers in building secure applications. Pieczul et al. [132] discussed challenges

facing developer-centred research and highlighted the need for deeper understanding

of the continuously evolving field of software development. Recruiting developers and

ensuring ecological validity are examples of challenges facing studies in this area. De-

velopers are busy and must often comply with organizational restrictions on what can

be shared publicly. To partially address these issues, Stransky et al. [158] designed a

platform to facilitate distributed online programming studies with developers.

We now discuss relevant research focusing on the human factors of software se-

curity and investigating security tool adoption, their benefits, and improving and

proposing new tools.

17

2.4.1 Security Tool Adoption

While investigating the integration of security tools in companies’ processes, previous

research found that developers generally exhibited a security is not my responsibility

attitude [175,179,182]. Moreover, only a small number of large companies in the study

by Xiao et al. [179] were using security tools to ensure the security of their code, and

in these companies security best practices were informal. Developers were expected

to follow best practices without any specific policies or guidelines. Small companies in

the same study did not consider security as a dimension in the development process;

in these companies developers were not required to follow secure coding practices.

Across relevant research, several factors influencing the adoption of new security tools

were identified; these could also be potential influencing factors to the integration of

security in general, not just the adoption of security tools. We will now highlight

some prominent factors influencing developers’ adoption of security tools.

Company Policies and Company Culture. The development company’s policies

and the overall company culture towards security were found to be among the main

deciding factors in motivating security in development and encouraging developers’

decision to adopt new security tools [179,182]. Developers who were required by their

company policy to use security tools to test their code, did indeed use these tools.

Companies that were keen on security considered it as a shared-responsibility; these

companies mandate the use of security tools and following security best practices,

encourage collaboration between developers and security experts, and offer security

education opportunities to developers [179]. On the other hand, developers who faced

bureaucracy when trying to introduce a new tool to their toolbox, dismissed the idea

of using new security tools. To encourage developers to use security tools, Wurster

and van Oorschot [178] suggest mandating their use and rewarding developers who

code securely through external means.

Knowing that even developers who have security knowledge and those recognizing

the importance of tending to security throughout all the stages of the development

lifecycle exhibit the same behaviour [175, 179, 182], we believe that the security is

not my responsibility attitude directly stems from company policies and culture. De-

velopers with this attitude relied on other entities to ensure the security of their

18

applications, be it the design team (by identifying security requirements), or the code

review or testing teams (by identifying vulnerabilities in the code). However, despite

this reliance, collaboration between developers and testers was lacking [179]. This

dissociation implies that developers will not learn about security and will continue to

make the same vulnerability-causing programming mistakes.

Application Domain. Participants’ perception of the usefulness of security to

their applications influences their intentions to practice secure development [177].

The domain and context of use of the application was found to be prominent factor

in adopting security tools [179, 182]. Developers assume that if end-users do not

interact with their code or if they are building an internal application for a known set

of users, then their application is not security-sensitive and thus there is no need to

use security tools. Some developers assume that their application is secure, since the

design stage considers any security features that need to be included. Even though

this is a plausible assumption, it only applies to security functions; the design stage

does not account for vulnerabilities resulting from implementation mistakes. This

highlights some developers’ misconceptions of software security; they only attribute

it to specific functions, such as “operational security, software access control, and user

authentication” [179], missing vulnerabilities—a major reason for security breaches.

Security Tools Complexity. The factors described above were extracted from an

exploration focusing on adopting security tools, however, they could be considered

general factors affecting the use of security tools (whether new or already part of the

developers toolbox). The complexity of security tools, however, is more relevant to

adopting new tools.

Some developers are reluctant to use security tools because they are complex and

require special security knowledge [175, 179]. For many, installing and learning how

to use and interpret the output of a new tool was too steep a cost that sometimes

outweighs the benefits [175]. Some developers also mentioned that the high rate of

false positives increased the “cost” of using the tool without any apparent benefits.

Unless mandated by their company, developers are less likely to take time out of their

allocated development time to try using a new security tool.

19

2.4.2 Developers’ Abilities and Expertise

As security vulnerabilities increasingly spread [114, 119], developers and their lack

of security education have been criticized. The assumption was that if developers

learned and cared about security, they could avoid vulnerabilities [24,178]. Conflicting

opinions argue the reason might be because security guidelines do not exist or are

not mandated by the companies [175, 179, 182], or that developers might lack the

ability [119] or proper expertise [27] to identify vulnerabilities despite having general

security knowledge.

Baca et al. [27] found that developers’ general experience (e.g., the number of

years of development experience, or experience with the programming language) did

not have the expected positive impact on the correctness of classifying vulnerabilities

as true or false positives. The two main influential factors were developers’ experi-

ence with code analysis tools and prior security knowledge. Developers with specific

experience in using SATs and prior security knowledge were significantly better at

properly analyzing security vulnerabilities.

Oliveira et al. [119] argued that developers and security education are not the root

causes of security vulnerabilities. They explained that developers’ decision-making

processes are “heuristics-based”; throughout their tasks, developers are consumed

with solving problems that assume common cases, and are not necessarily consid-

ering all the available information. Vulnerabilities are usually unexpected corner

cases [119] and identifying them is a cognitively-demanding task [149], hence they

are not included in developers’ set of heuristics. Oliveira et al. showed that security

vulnerabilities are “blind spots” in developers’ decision-making processes; developers

are not commonly thinking in terms of security while coding. The study showed that

developers are mainly focused on functionality and performance, and that security is

not commonly included in their programming tasks. Even participants with security

knowledge were unable to identify security issues, because they were not currently in

the security mindset. However, when explicitly alerted of potential security issues,

participants were more conscious of security in their tasks.

Baca et al. and Oliveira et al. argued for a more customized security experience

for developers. Baca et al. suggested that to achieve best results in analyzing security

20

vulnerabilities, developers need to gain practical experience in using static-analysis

tools with a focus on security aspects. Whereas, Oliveira et al. recommended in-

context security education. They explained that solely relying on teaching developers

about security vulnerabilities in general and then expecting them to identify these

vulnerabilities while coding is not ideal. Rather, they recommended priming devel-

opers about potential vulnerabilities in-context, in their IDE, while they are writing

code. In addition, Thomas et al. [165] call for better training opportunities that target

the specific security issues that developers encounter in their code, as well as tailoring

the training to address weaknesses in developers’ security knowledge. Weir et al. [172]

found that direct interaction with security issues can in fact lead to better security.

In general, developers often have trouble finding and understanding security in-

formation [29,110], and usually turn to their peers or web searches for help [29].

Existing research has noted a gap in communication and security knowledge be-

tween developers and security experts (sometimes referred to as auditors) [110, 111,

165]. Some teams employ a developer who is interested in, or knowledgeable about,

security to act as a liaison between the development team and security experts [165].

Nafees et al. [110] proposed “Vulnerability Anti-Patterns” which encapsulates recur-

ring errors that lead to vulnerabilities in a template that is intended to captures

knowledge of existing vulnerabilities in a usable manner for developers. Nafees et al.

hypothesize that using this pattern-based approach familiar to developers would help

bridge the communication gap between security experts and developers, and help

developers understand how attackers can exploit vulnerabilities in their code.

2.4.3 Improving and Introducing New Security Tools and Methodologies

Approaches to improve security include advocating for the use of static analysis

tools [35, 78, 81], reducing the number of false positives in security tools [118, 168],

and using innovative approaches, such as machine learning to assist in the discovery

of vulnerabilities [73, 168, 183]. For example, Perl et al. [131] recently used machine

learning techniques to develop a code analysis tool. Their tool has significantly fewer

false-positives compared to previous work. In the reminder of this section, we discuss

relevant work that focuses on the human aspect.

21

Smith et al. [149] proposed an approach to help toolsmiths build tools that sup-

port developers’ information needs while analyzing vulnerabilities. They identified

17 categories of information that developers seek during the analysis of SAT warn-

ings. These categories included questions regarding understanding vulnerabilities,

attacks that might exploit these vulnerabilities, alternative fixes, the intended func-

tionality and the context of the code, how to interpret the tool’s output, how to

find more details on the detected vulnerabilities, and whether the vulnerability was

worth spending time to fix it [149,150]. Their study, however, included students who

do not necessarily have the same information needs or apply the same strategies as

professional developers.

Xie et al. [180] proposed a tool that follows the in-context approach recommended

by Oliveira et al. [119]. Xie et al. prototyped a tool to remind web developers

of secure programming practices in their IDE. The tool performs static analysis of

the code, and alerts developers of potential issues on-the-spot. Although the tool

does not cover all vulnerability types, usability evaluations (e.g., [96, 163, 164, 181])

showed promising results in encouraging developers to be more attentive to security.

Focusing on mobile applications, Nguyen et al. [115] developed an IDE plugin to

support Android application developers adhere to, and learn about, security best

practices without distributing their workflow. Studies evaluating the plugin suggest

that its usage significantly improves the security of code created by both professional

developers and hobbyists [115].

In an alternative approach, Wurster and van Oorschot [178] recommend taking

developers out of the loop through the use of Application Programming Interfaces

(APIs) to improve code security. Trüpe [169] proposed a research direction for im-

proving the design of APIs to reduce vulnerability-causing mistakes. Acar et al. [10]

evaluated five cryptographic APIs and found usability issues that sometimes led to

insecure code. They also found that API documentation that provided working ex-

amples was significantly better at guiding developers to write secure code. Focusing

on software security resources in general, Acar et al. [14] found that some available

security advice is outdated and most resources lack concrete examples. In addition,

they identified some under-represented topics, including program analysis tools.

22

2.5 Software Visualizations

Visualizations is one of the main demanded features of SATs [79]. In this section we

give a brief background on software visualizations and visualizations specifically for

software security.

Visualizations transform information into a visual form that reveals hidden in-

formation in the data, supports and encourages data exploration and analysis [49].

Visualizing data can lead to discoveries that were otherwise inconceivable [151].

Software visualization is a form of information visualization. Specifically, it is “the

art and science of generating visual representations of various aspects of software and

its development process” with the goal to “help to comprehend software systems and

to improve the productivity of the software development process” [49].

The majority of the software visualization literature focuses on supporting soft-

ware development tasks [69]. Visualization systems exist for exploring the source

code and its structure, such as call graphs and metrics [162], the relations between

Object-oriented Programming (OOP) classes [15, 128], and class dependencies [50].

Other work focuses on visualizations to support performance analysis [46, 138, 147].

As examples, Figure 2.2 shows a call graph for the libgklayout Mozilla plugin, whereas

Figure 2.3 visualizes which class depends on which for a Java graphics framework.

Other research focused on using visualizations to support collaboration during

SDLC activities. Müller et al. [109] explored the use of source code visualizations,

among other methods, to encourage and support collaborative code reviews using

multitouch interfaces. Anslow et al. [18] developed a source code visualization system

using a large multitouch table as the interface. The aim of their system was to help

developers collaborate in exploring the structure and evolution of the different versions

of the software systems. The visualization system supports multiple visualizations

that provide an overview of the system being analyzed with the ability to dig deeper

for more details, as well as discover problematic entities such as particularly small or

large classes. Anslow et al. found their system did indeed encourage collaboration

and team discussion.

As for visualizations for software security, we found little work addressing this

23

Figure 2.2: Call graph of a Mozilla plugin [162].

Figure 2.3: SourceViz Class dependency view [18]

24

area. We will now present two notable examples.

Fang et al. [59] proposed a tool that automatically produces diagrams necessary

for software security analysis tasks, such as threat modelling. The detailed diagrams

are automatically generated by the tool after it collects trace data from the system

during run time. The tool allows security analysts to explore the diagrams through

time and with different levels of detail. Automatically generating the diagrams using

this tool is significantly faster than the manual method; the proposed tool reduced

the time taken to the initial diagrams from months to hours. This tool, however,

requires a fully implemented program, so it cannot be used in the early stages of the

SDLC.

Goodall et al. [69] developed a visual analysis system allowing developers to ex-

plore vulnerabilities detected in their source code. They aimed to help developers

gain a better understanding of the security of their code by providing a visual repre-

sentation of the aggregate results from different code analysis tools. The visualization

presented each source code file as a block, where the block’s width depends on the

number of potential vulnerabilities detected in the file it represents. Although the

authors explain different use cases of their proposal, there was no user testing or

usability evaluation done to evaluate its efficacy.

The majority of the work addressing visualizations for software security fails to

address the human aspect. The cybersecurity visualization research community has

acknowledged the need for using user-centered design methodologies and evaluation

through the entirety of the design process of visualization tools [102]. Despite this,

most work published at VizSec, 3 the main conference for security visualizations,

rarely includes user studies or evaluations of usability with target users of the system.

In Chapter 3, we present our user-centered approach for designing and evaluating

a visual analysis prototype where developers/testers collaborate to reduce risks of

security vulnerabilities in their code.

3http://vizsec.org

25

2.6 Research Gap Analysis

In this chapter, we reviewed relevant research on the human factors in software engi-

neering and software security. As evidenced, several research gaps remain in address-

ing the human aspects of software security. Usable security research for software de-

velopers has been an under-investigated area [65,71] and is still in its early stages [13]

despite recent advancements.

In this thesis, we are taking a holistic approach to explore software security in

real life. Rather than focusing on specific tools or a specific development stage, we

are addressing security in the SDLC overall. We are looking into real-life practices to

determine the status quo, and identify positives and negatives in existing processes.

This allows for more informed approaches towards supporting the positives and ad-

dressing barriers to security. Knowing where we stand in terms of the overall security

can also inform approaches focusing on specific stages of development. In general, we

focus on the interplay between the developer and software security. Specifically, we

explore developers’ motivations, abilities, expertise, attitudes, and behaviour towards

software security. We take a human-centric approach to address the following aspects

of the research gap:

• Focusing on the overall process of software security.

• Identifying and evaluating current strategies and processes addressing security

throughout the SDLC in practice.

• Exploring developers’ motivations towards software security and identifying fac-

tors that influence their motivation.

• Identifying opportunities for acquiring security knowledge, and investigating

how it influences security practices and motivation.

• Supporting exploration of security vulnerabilities and collaboration between

team members and between teams.

2.7 Background on Activity Theory and Self-Determination Theory

We will now give brief background on two main theories that we have used to explain

our results in Chapter 5.

26

Figure 2.4: Engeström’s triangle [55]

2.7.1 Activity Theory

Activity theory [53,55] can be defined as “a philosophical and cross-disciplinary frame-

work for studying different forms of human practices as development processes, with

both individual and social levels interlinked at the same time” [90]. Activity is the

unit of analysis and is the key to understanding human functioning in activity the-

ory [55, 112]. An activity consists of a subject (someone or a group involved in the

activity) who uses a tool as a mediator to transform the object (their goal or objective)

into an outcome [112]. Engeström extended this model by proposing the “activity

system model (Engeström’s triangle)” [55, 90]. As shown in Figure 2.4, tools medi-

ate the relation between subject and object, rules (both explicit and implicit) mediate

the relation between subject and community, and finally the mediation between object

and community is done through division of labour (explicit and implicit organization

of the community involved in the activity) [55,90].

The “third generation of activity theory” takes two activity systems as the min-

imal unit of analysis [54]. It aims to understand discussions, perspectives, and in-

teraction between multiple activity systems. As shown in Figure 2.5, each activity

system transforms the raw object (object 1) to their desired outcome (object 2) and

potentially to a shared outcome (object 3).

One of the most relevant principles of activity theory is the principle of multi-

voicedness [54]. Rather than a homogeneous system, activity theory views an activity

27

Figure 2.5: Third generation activity theory with two interacting activity systems [54]

system as consisting of multiple perspectives, traditions, and interests [54, 117]. The

multi-voicedness is magnified when multiple activity systems interact. Even though

multi-voicedness can be a source of trouble, it can also be a source of innovation,

when the participants from the interacting activity systems are involved in acts of

communication and negotiation to amalgamate their (possibly) conflicting perspec-

tives [54]. These acts of communication and negotiation are what result in reaching

the shared outcome (object 3 in Figure 2.5).

Contradictions may arise due to “historically accumulating structural tensions

within and between activity systems” [54]. Such contradictions are considered by

activity theory as the central source of the activity’s change and development that

occurs through attempts to resolve these conflicts.

In Chapter 5, we use Activity Theory to describe the interaction between the

different teams working on developing a software product, their different objectives

and perspectives, and how they can benefit from this multi-voicedness and resolve

their contradictions to enhance the security of their software.

2.7.2 Self-Determination Theory (SDT)

In Chapter 5, we use the Self-Determination Theory (SDT) [47,141] to explain what

motivates developers and their teams to address software security, as well as reasons

for the lack of motivation with respect to software security. SDT identified distinct

types of motivation, each with clear consequences on human potentials to thrive [142],

specifically for learning, performance, personal experience, and well-being [141]. SDT

28

Figure 2.6: The self-determination continuum [64,141]

uses the autonomy-control continuum to differentiate the different types of motivation

with respect to their regulation [142]. Behaviours are autonomously motivated when

they are fully self-determined, whereas controlled behaviours are those driven by

external or internal pressures or an obligation to act [141,142]. Figure 2.6 shows the

different types of motivation: intrinsic, extrinsic, and amotivation.

Intrinsic motivation is when an activity is voluntarily performed for the pleasure

and enjoyment it causes. Intrinsic motivations are driven by humans’ “inherent ten-

dency to seek out novelty and challenges, to extend and exercise one’s capacities, to

explore, and to learn.” [141].

In contrast, extrinsic motivation is when a person is engaged in an activity for

outcomes separate from those innate to the activity itself [141]. SDT classifies four

different types of extrinsic motivation: external, introjected, identified, and integrated

regulation. Although extrinsic, these motivations vary in their degree of autonomy

and self-determination (Figure 2.6). Along the autonomy-control continuum, external

regulation is the least automomous extrinsic motivation, where behaviours are per-

formed purely to satisfy an external demand, to receive an external reward, or to avoid

negative consequences. Introjected regulation behaviours are less externally-regulated

(less controlled), however, behaviours have not been fully internalized or accepted as

one’s own. They are rather internally-imposed to maintain self-esteem, e.g., to avoid

the feeling of guilt or to boost ego. Identified regulation is a more autonomous form

29

of extrinsic motivation, where the person consciously evaluates the behavioural goal,

identifies with it, and accepts it as personally important [142]. Although internally-

regulated, the behaviour is seen as chosen by oneself, thus self-determined [170]. The

most autonomous form of extrinsic motivation is integrated regulation, where the per-

son fully owns the behaviour; she has internalized the behavioural goal and fully

identifies with it. Integrated regulation is considered extrinsic, despite the person’s

autonomy and self-willingness to act, because the behaviour is performed for separate

outcomes and not for the pure enjoyment from the activity itself [170].

Based on their levels of control versus autonomy, intrinsic motivation, integrated

regulation, and identified regulation form an autonomous motivation composite [141].

External and introjected regulation form a controlled motivation composite [141].

Amotivation is the lack of motivation to act, where the person does not act at all

or acts without intent [141]. Amotivation has three forms. The first form is when

people feel they cannot effectively achieve the desired outcome, e.g., because they are

not competent to do it [141, 142, 170]. The second form of amotivation occurs when

the action lacks interest, relevance, or value to the person [141,142,170]. Finally, the

third form is when amotivation to a behaviour is actually a defiance and motivation

to oppose said behaviour [142].

SDT shows that compared to controlled motivation, the more autonomous moti-

vation styles are associated with various positive outcomes, such as increased engage-

ment, improved performance, more creativity, more cognitive flexibility, and better

learning [141,170].

To facilitate the integration of extrinsically-motivated behaviours, the person

should feel more autonomy and freedom which allows them to internalize these be-

haviours [141]. This leads this person to experience more volitional persistence and

self-driven interest in the activity [170]. In addition to autonomy, SDT postulates

that the degree of internalization depends on the person’s perceived self-competence

to perform the act [141], and their feeling of relatedness (i.e., feeling connected to

others and being a significant member of the group [142]).

In Chapter 5, we use SDT to explain motivations and amotivations to software

security identified in our interview data.

Chapter 3

Visual Representation of Source Code Vulnerabilities

Software security initiatives recommend using SATs to evaluate source code in

the early stages of development. However, despite their benefits [39], SATs are not

widespread in the Software Engineering community [95], for a variety of reasons in-

cluding the lack of support for collaboration [79].

In this chapter, we explore the human factors aspect of code analysis to understand

the reasons for the low-adoption of SATs. We first study the usability issues faced

by software developers while using code analyzers by evaluating FindBugs1 [5], a

popular open-source SAT. Then, to address serious usability issues uncovered by

evaluating FindBugs, we take a user-centered approach in designing a visual analysis

environment to support developers analyze the security of their code. We design

and implement an initial prototype, Cesar, to support what we call CSCR, where

developers/testers collaborate to reduce risks of security vulnerabilities in the code

under review. Next, we evaluate the usability and effectiveness of the prototype,

and propose additional features for future design iterations. The usability evaluation

studies, for both FindBugs and Cesar, use the Cognitive Dimensions framework and

are informed by the Cognitive Walkthrough methodology. As a final contribution of

this chapter, we provide general recommendations for designing collaborative code

review tools based on the lessons learned from evaluating FindBugs and Cesar.

This chapter is published in IEEE Symposium on Visualization for Cyber Security (VizSec),
2016 [21]

1At the time of writing this thesis, SpotBugs (https://spotbugs.github.io) had been created
as a successor for FindBugs.

30

https://spotbugs.github.io

31

3.1 Using the Cognitive Dimensions Framework for Usability Evaluation

The Cognitive Dimensions framework [37] seeks to determine whether users’ intended

activities are appropriately supported by the system in question. In cases where there

are a deficiencies, the designer explores how the system can be fixed and the trade-offs

of different design alternatives guided by the framework. The Cognitive Dimensions

framework was designed to aid, even the non-Human Computer Interaction special-

ists, in evaluating the usability of their systems. Blackwell and Green [36] developed a

Cognitive Dimensions questionnaire for use by prospective users for evaluating system

usability. One of the aims of this framework is to improve the quality of discussion be-

tween designers and those evaluating the design by providing a common vocabulary—

the cognitive dimensions. Evaluating the usability of a system using the Cognitive

Dimensions framework consists of three main steps: (1) classifying users’ intended

activities, (2) analyzing the Cognitive Dimensions, and (3) determining whether the

system appropriately supports the users.

The Cognitive Dimensions framework classifies six generic activities when deal-

ing with information structures: incrementation (adding more information without

changing the existing structure), transcription (copying information from one infor-

mation structure to another), modification (changing the structure of information),

exploratory design (exploring with changing the existing structure and adding fur-

ther information to it), searching (looking for specific information), and exploratory

understanding (discovering the structure and the basis of information). Activities in

Cesar fall under searching, and exploratory understanding. There are 13 main Cog-

nitive Dimensions, and more have been proposed in literature [37]. Each dimension

gives a reasonably general description of an information structure. The purpose of

the system being evaluated defines whether it is desirable to be rated high/low on

each Cognitive Dimension. For example, consider the Viscosity Cognitive Dimension;

it describes the system’s resistance to change. A viscous system requires users to per-

form many actions to fulfill a single task. Viscosity could be useful in preventing

accidental errors; the redundancy in steps allows users to notice errors and also forces

them to think about their actions before acting. However, viscosity is harmful for

modification and exploratory activities, as it places a cognitive load on the users.

32

When using the framework for the purpose of our studies, it was confusing and

disruptive to the discussion to have some Cognitive Dimensions that the system is

supposed to fulfill (i.e., Cognitive Dimension is high) and some which it should avoid

(i.e., Cognitive Dimension is low). As a solution, we present all Cognitive Dimensions

as desired dimensions, rewording as needed to frame each positively.

We provide a brief description the five Cognitive Dimensions [37] selected for the

usability evaluations presented herein. They are all particularly desirable cognitive

dimensions for systems enabling exploration.

• Fluidity (FLUI) is the desirable counterpart of Viscosity. Being at the opposite

end of the viscosity spectrum, fluidity is useful for modification activities and ex-

ploratory design. Due to the nature of our application (code review tools), we

include this dimension relating to changes to how defect and vulnerability informa-

tion is represented.

• Low Cognitive Load (LCOG) is the desirable counterpart of Hard Mental Oper-

ations. It described a system that does not place a high cognitive load on the

user.

• Abstraction (ABST) describes a system that uses abstraction mechanisms and the

types of abstractions used. Abstractions help make information structures more

succinct and could reduce viscosity. Enabling different levels of abstraction is useful

for exploration activities.

• Closeness of Mapping (CLOS) is providing a match between representations of

information and its domain in a way that allows users to build on their domain

knowledge to solve problems.

• Visibility and Juxtaposability (V IJU) is the ability to view components easily and

to view any two components side-by-side. This Cognitive Dimension is useful for

transcription and incremental activities, and is especially useful for exploratory

design.

33

3.2 Using the Cognitive Walkthrough Methodology for Usability Evalu-

ation

The Cognitive Walkthrough [134] is a method used for evaluating the usability of sys-

tems from the perspective of users. It focuses on evaluating the system learnability by

focusing on users’ cognitive activities to ensure the ease of system learning through

exploring the interface. Users’ tasks are identified, and one or more evaluators work

through the steps to perform these tasks from prospective users’ perspective. Evalu-

ators thus identify potential usability issues and provide suggestions to improve the

system learnability. This method has been used to evaluate the usability of different

systems, including visualization systems [16].

At each step during the walkthrough, evaluators typically ask the following four

main questions. We present the questions herein essentially verbatim from the original

paper [173].

• Will the user try to achieve the right effect?

– For the current step, does the user realize that this step is required to

achieve their goal? For example, if the user’s objective is to identify po-

tential security vulnerabilities in their code using a static analysis tool, do

they realize that they first need to run the tool to analyze the codebase?

• Will the user notice that the correct action is available?

– For example, is the button visible? or is the the required action intuitive?

• Will the user associate the correct action with the effect they are trying to

achieve?

– Will the user realize that the visible action actually helps them achieve

their goal? For example, if the user needs to click a button to run the

SAT, is the button text clear? Does it help the user associate it to their

goal?

• If the correct action is performed, will the user see that progress is being made

toward solution of their task?

34

– Will the system provide the user with proper feedback showing their progress

towards completing their task?

In this chapter, the usability evaluations of FindBugs and Cesar used the Cognitive

Dimensions framework and was informed by the Cognitive Walkthrough methodol-

ogy. Whereas a typical Cognitive Walkthrough focuses on system learnability from

the perspective of novice users, our method focuses on the overall usability of the

system, whether the system helps users understand and explore the information it

presents, and whether it influences the interaction between users. However, similar

to a Cognitive Walkthrough, we observe evaluators’ in-context discussion while they

perform the different tasks provided by the interface. Next, we reflect on the results

of the these discussions, and evaluate the interface using the Cognitive Dimensions

framework.

3.3 FindBugs’ Study

After surveying different open source and proprietary SATs [118], we chose to eval-

uate the usability of FindBugs.2 It is a popular open source tool used in the Mi-

crosoft Security Development Lifecycle (SDL) and is widely used in similar research

projects [23, 79, 185]. This study does not focus on FindBugs’ underlying defect de-

tection mechanisms, but rather on the tool’s User Interface (UI) as it is the element

with which developers interact. FindBugs analyzes Java code to detect potential

defects, and divides them into nine categories, e.g., Security, Malicious Code, and

Performance. Each defect has two metrics: “Rank” indicating its severity and “Con-

fidence” indicating the tool’s confidence that it is an actual issue. Figure 3.1 shows

a screenshot of FindBugs interface and the output of its analysis of an open-source

codebase.

3.3.1 Study Design

Informed by the Cognitive Walkthrough methodology, we evaluated the usability of

FindBugs v.2.0 with a group of four evaluators who are experts in the fields of security

2http://findbugs.sourceforge.net/findbugs2.html

http://findbugs.sourceforge.net/findbugs2.html

35

Figure 3.1: Screenshot of FindBugs interface.

and usable security. We refer to FindBugs’ evaluator i as EiFB. The session lasted

90 minutes and was voice recorded. Members of the research team were present to

observe and take notes during the session. FindBugs UI was displayed on a 47-inch

screen using a single mouse and keyboard for interaction (see Figure 3.2a). The

session started with running FindBugs analysis on the source code of Apache Tomcat

v.6.0.41.3 Next, the evaluators performed some tasks to explore FindBugs’ UI and

its warnings of potential vulnerabilities. These tasks include:

T1 Choose a package and view its vulnerabilities.

T2 How many Security vulnerabilities are there in the codebase?

T3 Choose a class and view its number of vulnerabilities.

The evaluators then focused on some warnings and worked towards classifying them

as false positives or true vulnerabilities. Finally, the evaluators discussed different UI

features they wished to have been available in FindBugs.

3http://tomcat.apache.org/download-60.cgi

http://tomcat.apache.org/download-60.cgi

36

(a) FindBugs (b) Cesar

Figure 3.2: Usability studies session setup.

3.3.2 Results

We found, also aligned with previous research [79], that FindBugs’ UI does not ade-

quately support collaboration. The evaluator managing the input devices, E2FB, was

more engaged in exploring the interface and vulnerabilities than the rest of the eval-

uators. Communicating ideas was problematic; evaluators tried to draw each other’s

attention by pointing to the screen, and they sometimes resorted to asking E2FB to

point the mouse to what they wanted to discuss by describing its position (e.g., top

right of the screen).

The UI has poor fluidity (−FLUI),4 and was hard to navigate. Often the evalu-

ators would be silent while trying to determine how to perform a certain task or how

to make sense of the information presented on the screen. In addition, to complete

some tasks, the evaluators needed to perform many steps. For example, FindBugs

presents potential defects as a tree structure, where the details of the individual de-

fects are accessible via the leaf nodes. For every vulnerability that the evaluators

wanted to inspect in detail, they had to click through all the nodes down the tree

branch containing that vulnerability. This deterred the evaluators from extensively

exploring vulnerability details, and likewise had a negative effect on collaboration

between them, as they were very consumed in the steps that they forget to discuss

the information they were shown.

4A + or − sign before a Cognitive Dimension indicates that the interface is high or low on this
dimension, respectively. A + sign throughout this chapter indicates an advantage of the interface.

37

The default setting of FindBugs does not maintain the codebase hierarchy (−CLOS);

the tree structure focuses on individual defects rather than on their distribution in

the codebase. Granted, the UI allows users to structure the tree by the codebase

packages, however this option is hidden in the UI in a way that the evaluators did

not discover throughout the entire evaluation session. Although the default hierarchy

of the tree structure is adjustable, it was not clear for the evaluators how to perform

this task and the role of some elements of the UI was not clear. For example, while

trying to adjust the structure of the tree, E1FB said, “I don’t know what the arrow

part is. [Does] the arrow means ignore everything to the right?”

The structure of the tree, focusing on the defects rather than the codebase, swayed

the evaluators to become too consumed in the first vulnerability they viewed. This

was exacerbated by the fact that in order to view other vulnerabilities, they would

have to go through many steps and clicks. This led the evaluators to become absorbed

by their attempt to assess a vulnerability without assessing the overall quality of the

code, or thinking first about their strategy to evaluate the codebase.

There was confusion related to other aspects of the UI as well, such as the Rank

and Confidence metrics. The Rank of a defect is presented as an integer ranging

from 1 to 20, while the Confidence is presented by colours (e.g., if a defect was

detected with high confidence, it is marked red). After inspecting the interface, the

evaluators deduced that the lower the rank, the more severe the vulnerability. They

were inspecting a low rank vulnerability that was marked red. E2FB said, “So lower

[rank] is higher [severity]. Because it’s red? and red means bad.” However, towards the

end of the evaluation session, the evaluators noticed another vulnerability that did not

match their reasoning. At this point E2FB exclaimed, “Wait, hold on! I thought lower

was higher [severity]! So, maybe the colour and the thing [rank] [aren’t] related.” This

confusion resulted from the inconspicuousness of the Confidence metric (−V IJU).

FindBugs’ UI does not explain what the integer values or colours mean, thus the

evaluators erroneously linked the colours (i.e., Confidence) to the integer values (i.e.,

Rank), and attributed them both to the vulnerability’s severity. The discussion trying

to decipher the meaning of, and relation between, the colours and the integer values

ended by E1FB saying, “I think the rank needs some kind of explanation. What’s a 7

38

mean? [...] Is there anything in the documentation that would help? [all laughing].”

On the other hand, FindBugs’ UI allows users to adjust the size of its components,

e.g., they could increase the size of the code pane when they want to focus on the

source code. In addition, when a user clicks on the defect leaf node in the tree

structure, the UI displays the details of this defect in a separate pane, as well as the

source code with the defect lines highlighted. FindBugs also provides the ability to

add and save textual annotations to the detected defects.

Although FindBugs allows users to focus on specific defects, it fails to encourage

users to develop a strategy for evaluating the overall quality of the code. In addition,

it does not adequately support collaboration nor exploration activities.

3.4 Cesar

We designed and implemented Cesar, a prototype aiming to leverage the benefits of

SATs (e.g., FindBugs), while addressing their shortcomings. We chose FindBugs for

demonstration purposes, however, our general approach could be applied to the results

of any SAT. The prototype was developed as a web application using JavaScript

and D3.5 This allows it to be used on many platforms needing only a browser,

thus eliminating the need to install more software applications. Cesar offers a visual

representation of the output of FindBugs in the form of a treemap [148], where the

codebase (sub)packages are interior nodes and the classes are the leaf nodes. The

size of a leaf node depends on the number of potential vulnerabilities in the class

represented by this leaf node relative to the total number of vulnerabilities in the

codebase. In contrast to Goodall et al.’s proposal [69], Cesar’s treemap maintains

the codebase hierarchy to which developers are accustomed to maintain closeness to

the programming environment. Cesar uses a large multitouch vertical surface as an

interface. Large multitouch displays have shown promising results in supporting and

promoting collaboration between team members [18].

Cesar is designed to satisfy the following objectives:

O1 Support and encourage collaboration

O2 Encourage exploration

5https://d3js.org

https://d3js.org

39

O3 Support focusing on the quality of the code as a whole

O4 Support focusing on details of specific vulnerabilities

The first step to building the prototype was to run FindBugs analysis on a codebase.

We analyzed the Catalina package of Apache Tomcat written in Java. However, our

implementation is extensible to source code in any programming language that is or-

ganized in a hierarchical structure, either implicitly through the language (e.g., OOP)

or through the programmers’ file organization. The result of FindBugs’ analysis is an

XML file of potential defects in the software analyzed; the file contains each defect’s

name, its severity and priority, the category under which it falls, and information

about its location in the codebase. However, the file is arranged by defect, ignoring

the codebase hierarchy. Thus, we extracted the XML file and built a JSON file in the

proper format for use by Cesar, maintaining the codebase hierarchy. We also added

the description6 of every detected defect to the JSON file. The current implemen-

tation of Cesar visualizes the different types of defects as categorized by FindBugs,

however, the same settings apply for visualizing only security vulnerabilities.

Through checkboxes above the treemap visualization pane, Cesar enables devel-

opers to choose the categories of issues they want to include in the visualization.

Figure 3.3 shows Cesar with all the categories included in the treemap visualization.

Gray rectangles show package names, and rectangles in a coloured block below each

package represent all the subpackages and classes in this package. Each class is rep-

resented by a rectangle. Classes belonging to one package have the same colour. 7 In

the presented implementation of Cesar, colours were chosen randomly and only serve

to show classes that belong to the same package. In Section 3.6, we discuss how rect-

angle colour could be used to present more information. The area of a rectangle (i.e. a

class) in the treemap represents the number of potential issues in the class relative to

the total number of issues detected in the codebase. The visualization is interactive,

i.e., the treemap view is adjusted in real-time to add/remove each category the user

selects/unselects. The relative area of each rectangle is adjusted to show only the

6http://findbugs.sourceforge.net/bugDescriptions.html
7Rectangles having the same colour that are not adjacent to each other do not belong to the

same package.

http://findbugs.sourceforge.net/bugDescriptions.html

40

Figure 3.3: Cesar’s treemap showing the distribution of selected defect categories in
package Catalina.

number of issues belonging to the selected categories. Although the relative size of

the treemap rectangles change with changing the categories, the rectangles remain in

the general vicinity to help developers maintain perspective.

Users can change the view of the treemap to focus on a sub-package by tapping it.

The visualization thus zooms-in on that particular package, filling the entire treemap

pane with it, as in Figure 3.4 showing sub-package catalina.realm. When the user

zooms to the class level, they can view the number of defects in each class. Each

rectangle is labelled with x of y, where y is the total number of issues in a class

and x shows how many of those belong to the selected categories. For example, in

Figure 3.4, class catalina.realm.RealmBase is labelled (1 of 9), indicating that it

has a total of 9 defects, and only one of them is of the selected category (Malicious

Code).

When the user performs a long tap on a class, two additional panes appear next to

the visualization pane: “details” and “source code”. The former lists all defects (in the

tapped class) that belong to the selected categories. Defects are grouped by categories,

and a brief description of each defect is available. The description is collapsable to

41

Figure 3.4: Cesar’s visualization, details, and source code panes.

save screen space. The “source code” pane displays the class’s code, highlighting

defect lines. As shown in Figure 3.4, the “details” pane lists the only Malicious Code

vulnerability in class catalina.realm.RealmBase, whereas the “source code” pane

displays its code with the vulnerability line highlighted.

The current version of Cesar created the treemap using FindBugs’ set of cate-

gories (e.g., Security, Performance). However, this set could be customized to best

fit the code review goals. For a security-focused code review tool, the set (Cesar’s

checkboxes) could include exclusively security vulnerability categories (e.g., Buffer

overflow, Cross-site scripting).

3.5 Cesar’s Study

To analyze how well Cesar fulfills its objectives, we conducted a usability evaluation of

its UI informed by the Cognitive Walkthrough methodology, and used the Cognitive

Dimensions as the evaluation framework.

3.5.1 Study Design

We held two independent usability evaluation sessions, each with two evaluators. The

four evaluators were recruited participants with industry programming experience and

high experience in Java programming. The evaluators performed all the tasks on the

42

prototype, while members of the research team observed and took notes. The ses-

sions were audio recorded and structured as follows. First, a researcher introduced

the study to participants and explained how a Cognitive Walkthrough is conducted,

then the participants started working together interacting with the prototype on a

75-inch vertical multitouch screen (see Figure 3.2b) to get an idea of how it works.

The researcher then gave participants some tasks to perform. After all the tasks were

done, each participant independently filled out a short survey soliciting their opinion

of the prototype. The researcher then interviewed the pairs to discuss their opinion

of the prototype and their recommendations. Both the survey and interview ques-

tions were discussing the Cognitive Dimensions, and were adapted from the Cognitive

Dimensions questionnaire [36].

We followed the Cognitive Dimensions framework when designing the study. We

categorized activities done using the prototype according to the Cognitive Dimensions

framework into exploratory understanding aiming to advance developers’ understand-

ing of the overall security-level of the program (e.g., identifying packages and classes

that contain the most security vulnerabilities) and searching activities (e.g., looking

for the explanation of the vulnerability type). We divided the tasks into “get to

know your system” tasks where participants spend some time exploring how Cesar

works, followed by some “specific” tasks that are representative of all that could be

conducted using the prototype, and finally some “general” tasks which allows them

to reflect more on Cesar’s overall purpose.

The “Get to know your system” tasks included:

KT1 Select (one or more) categories of bugs to see their distribution in the code base

KT2 Zoom in one package to see the number of bugs

KT3 Change the bug categories selected to see the difference in the number of bugs

KT4 Display the source code for a class

KT5 Find the different bug types present in a class

The “Specific” tasks included:

Find out:

ST1 how many security vulnerabilities in catalina.core package

ST2 how many packages have security vulnerabilities?

43

ST3 which (sub)package is the least/most vulnerable?

ST4 which line of code has Malicious code vulnerabilities in class catalina.realm.RealBase?

ST5 what does “MS: Field isn’t final but should be (MS SHOULD BE FINAL)”

mean?

For the “General” tasks, we asked the evaluators to imagine they are in charge of

approving the visualized Apache codebase for deployment. We asked them to describe

how they would do an appraisal of this software and how would they prioritize which

vulnerabilities to fix.

3.5.2 Cesar’s Strengths

In this section, we analyze the sessions’ outcomes based on the Cognitive Dimen-

sions, and discuss how the prototype fulfills each of its objectives (Section 3.4). In

Section 3.6, we discuss improvements to address some of Cesar’s weaknesses and

enhance the user experience. Cesar’s usability evaluator i is referred to as Ei.

Participants rated how Cesar fulfills objectives 2-to-4 on a scale of 1 (very well)

to 4 (not at all).8 Survey responses were positive, with mean scores of 1 for O2, 1.75

for O3, and 1.25 for O4.

O1 Support and encourage collaboration. In contrast to a personal computer

with a mouse and keyboard, the large multitouch interface offered all evaluators the

same view and level of control over the interface. In FindBugs, the evaluator managing

the input devices was more engaged than the others (Section 3.3.2), whereas Cesar’s

evaluators were almost equally engaged in interacting with the interface. They were

actively discussing their understanding of the different parts of the interface, as well

as discussing the steps they thought were necessary to perform the different tasks and

the implications of the different types of vulnerabilities. At no point during Cesar’s

usability evaluation sessions was one evaluator monopolizing the interface while the

other stood silent. E3 mentioned, “since it’s touch, the control is accessible. You

don’t have to hand over the mouse or anything, so that’s good.” When an evaluator

8Participants did not numerically rate Cesar with respect to O1, rather we rely on the verbal
discussion of their opinion and our observations.

44

successfully reached a desired view, they were keen to return to the main view to show

their teammate the steps followed to reach that view. As an evaluator was waiting

for their teammate to complete interacting with the interface, they were focusing on

the steps taken by their teammate and they would sometimes say words like “aha”

expressing that they have discovered something. The evaluators attributed this to

the natural feel of the interface and how easy it is to move from one view to another.

This implies that Cesar has high fluidity (+FLUI). In addition, because the interface

did not exhaust the evaluators’ working memories (+LCOG), e.g., it does not require

them to carry information from one step to the next, the evaluators could discuss the

steps with their teammates without breaking their train of thought, and so were able

to discuss and share information before moving to the next step.

O2 Encourage Exploration. Due to the abstract nature of the visualization (+ABST)

and the way the treemap structure maintained the codebase hierarchy familiar to de-

velopers (+CLOS), the evaluators were stimulated to explore the different aspects

of the interface as soon as they started interacting with the prototype. In addition,

E2 mentioned, “ [the interface] supports exploration pretty well, just by the nature of

touching the things that are on the screen, like that encourages you to go back and

look at other categories and compare.” The flexibility of the system and the fluidity of

switching from one view to another (+FLUI) helped the evaluators feel comfortable

to change a view and explore more. For example, when the task was to find the line

number that contains a “Malicious Code” vulnerability in a specific class (ST4 above),

the evaluators returned to the main view after inspecting that class, and looked for

the package that had the most “Malicious Code” vulnerabilities even though this was

not an assigned task.

The interface reduces cognitive load (+LCOG) when performing exploration tasks.

For example, the evaluators would explore which packages were most/least vulnera-

ble by looking for the visually biggest/smallest areas in the treemap when only the

“Security” category was selected. The prototype thus provides a quick overview as

opposed to Findbugs where users would have to go through each package in the tree

structure and look for the number of security vulnerabilities in each one. Cesar’s eval-

uators also mentioned that the treemap allowed them to easily discover areas where

45

there are many problems and to look for different trends in the code. The structure of

the interface guided the evaluators to continuously consider the overview along with

the detailed view, and the interface induced them to continuously explore available

information and ask themselves questions such as “What happens if we uncheck this

vulnerability category?”, “Why is this package so big?”, and “Why does this class

have all these security vulnerabilities?”.

O3 Support focusing on the quality of the code as a whole. The different

packages and classes in the codebase are represented with rectangles in the treemap

and the relative area of the rectangles represents the number of potential defects rel-

ative to the total number of vulnerabilities in the codebase. This form of abstraction

(+ABST) helped promote the focus on the overall quality of the codebase. For ex-

ample, the evaluators were not drawn into individual vulnerabilities before acquiring

an overall view of the quality of the codebase. Instead, they initially developed a

strategy for appraising the software, and then compared the areas of the rectangles

to each other and to the overall area of the visualization in order to begin exploring

the most problematic packages. E1 said, “I think we did take a step back to think,

‘okay what [is] our approach, do we stay here in a details view or do we go back to the

overview, or you know should we filter things more, filter things less’. So, we kind of

took a step back I think before every task to kind of figure out what our strategy is.”

We mentioned earlier that the interface guided the evaluators to continuously

consider the overview of the code base along with the detailed view. This was accom-

plished by the ease of starting from the main view containing the package in question

and the ability to zoom-in on it to get more details, where the level of zoom depends

on the detail depth. For example, in order to perform task ST4, evaluators started

from the main view, showing the catalina package, zoom in on the realm package,

and then display the vulnerabilities and source code of the RealBase class. By doing

so, the evaluators were able to evaluate the state of the realm package with respect

to the codebase before digging deep for the more detailed information. The ease of

switching between views (+FLUI) prevented distraction from the evaluators’ objec-

tive and focused their attention on the overall code quality. Nevertheless, the interface

does not force users to dig through the interface for every task, as it allows for general

46

exploration tasks, such as finding the most vulnerable package, without delving into

details. The evaluators mentioned that the interface was helpful in allowing them to

gain a general understanding of how vulnerable the codebase is, and that it does this

in a more interesting way than going through a list of potential vulnerabilities. E4

said, “I think it’s good that it’s pictorial and that people can discuss on it [...] It’s

not a pile of text that I’m going through. It’s not a list of errors.”

The interface allows for some shortcuts, e.g., it allows users to display defect

details and source code of any class by a long tap on its leaf node’s rectangle from

any view. This could be useful, for example, in case a user wants to explore the

class that has the most vulnerabilities, which would be represented by the biggest

rectangle in the treemap, or for someone who memorized the location of a class on

the treemap. We discuss more shortcuts that we anticipate to be useful for advanced

users in Section 3.6.

O4 Support focusing on details of specific vulnerabilities. When discussing

their strategy for appraising the codebase, the evaluators mentioned how they would

use filters provided by the interface and zoom-in on important packages to assess

how well the codebase fulfills their coding standards. E3 mentioned, “Depends on

what our standards are, or what we consider a bug that must be fixed, or one that’s

maybe not that important,” whereas E4 said, “Maybe I would start with the security

issues, maybe after I get all the security [issues] fixed, I would look at another [cat-

egory], say performance,” while tapping on the respective checkboxes. By providing

filters that allowed them to inspect vulnerability categories that are more critical to

them, and by adjusting the visualization in realtime (+FLUI) as more categories are

(un)checked, the interface allowed the evaluators to narrow down their focus to those

critical vulnerabilities. For example, when the evaluators did not want to inspect

“Style” issues, they unchecked it to disregard it from their analysis. Maintaining the

structure of the codebase hierarchy in the treemap visualization (+CLOS) aligned

with the evaluators’ familiarity with the hierarchical nature of the codebase. This

helped the evaluators focus their attention on specific vulnerabilities, rather than

trying to resolve to which package a class belonged.

In addition to filtering out irrelevant defects, evaluators consistently checked the

47

description of the vulnerabilities available through Cesar. However, their behaviour

varied; some started looking at the source code, discussing why a specific line was

problematic before looking at the provided explanation,while others started with the

explanation before checking the code. In either case, they all inspected the vulnera-

bility description area, mentioned that it was useful, and that its placement close to

the source code window invited them to consistently refer to it (+V IJU).

3.6 Future Enhancements

In this section, we address how Cesar may be improved in future iterations. Although

Cesar could be used to visualize any type of defect, our focus here is on security

vulnerabilities.

Display the number of vulnerabilities in a package on the treemap. Min-

imizing vulnerability details displayed by the treemap visualization encouraged the

evaluators to inspect the overall code quality, e.g., by allowing them to compare the

vulnerability of a package relative to other packages or to the codebase as a whole.

However, our evaluators mentioned that displaying the absolute number of vulnera-

bilities in the package could help them perform some tasks faster (+LCOG, +V IJU).

For example, evaluator E1 said, “It would be nice if the number of vulnerabilities that

are in a package could be written next to the package [name] [...] When we were looking

for the smallest package, we were like “is this the smallest?”, “is this the smallest?”,

whereas if it was just a number, we would have been able to spot it quicker”. Thus,

displaying the absolute number of detected vulnerabilities in a package beside its

name would further augment users’ focus on the overall code quality and speed up

some tasks. For consistency, the number beside the package name should follow the

same format as that displayed on class rectangles. It should be in the form of (x of

y), where x is the number of issues from the selected categories, and y is the total

number of vulnerabilities in the package from all categories.

Add a breadcrumbs trail. To further increase the fluidity of the interface, we

would use a breadcrumbs trail [106] to trace and display the hierarchy of the user’s

48

Figure 3.5: A secondary visualization showing the distribution of vulnerabilities in
each category. Selected categories are darker.

current treemap view in relation to the codebase structure. This would allow users

to switch easily between package levels with a single tap and to quickly identify

the location of the package/class in the treemap’s current view in relation to the

codebase (+FLUI). For example, rather than having to tap twice on the screen

to zoom-out of the fourth-level sub-package (e.g., package interceptors with full

path catalina.tribes.group.interceptors) to the second level (package tribes),

the user would tap on the name of the second-level sub-package in the following

breadcrumbs trail: catalina . tribes . group . interceptors. Although the evaluators

did not find it annoying to have to tap on the screen multiple times to reach a higher

package, e.g., evaluator E2 thought that, “Getting in [zooming-in] is really quick and

then getting back up [zooming-out] to the top is pretty quick as well”, we believe that

this feature would be particularly useful as a shortcut for more advanced users and

especially for large projects with deep package levels.

Use colours to represent data. In addition, as was suggested by the evaluators

during both usability evaluation sessions, we could use colours to introduce another

dimension of the data visualized by the treemap. For example, rather than using

random colours for the rectangles, packages and classes that are more critical to the

application, or those that need to be thoroughly investigated against security vulner-

abilities (e.g., classes handling databases), would be in warm colours, and the others

49

in cool colours. Alternatively, packages/classes could be coloured according to the

severity of their vulnerabilities, the warmer colours indicting more severe vulnerabil-

ities. This mechanism would provide yet another way for filtering information and

minimizing the cognitive load on users (+LCOG).

Use a secondary visualization. Finally, to increase the visibility of the vulner-

ability state of the code, we propose a secondary visualization to show the distribu-

tion of different vulnerability categories in the package/class in the current treemap

(+V IJU). Initially, both visualizations would show the distribution of all vulner-

ability categories in the codebase as a whole (package catalina in our example).

In addition, we could employ the linking and brushing techniques [33]. The sec-

ondary visualization and the treemap could be linked, such that whenever the treemap

changes, the secondary visualization could be updated in realtime to match the cur-

rent treemap. For example, if the user zooms-in on a sub-package, the secondary

visualization would be updated to show its distribution. Figure 3.5 depicts the sec-

ondary visualization as a bar graph showing the distribution of all the vulnerability

categories in the catalina.loader sub-package. It shows the absolute number of vul-

nerabilities in each category on its respective bar, as well as the package name, the

number of selected vulnerabilities, and the total number of vulnerabilities (+LCOG).

The colour of the bars will match that used in the treemap—grey bars for packages

and the same colour used in the treemap for classes. In Figure 3.5, the user selected

only a subset of vulnerability categories (Security, Malicious code, and Performance);

unselected categories are faded out on the bar graph. Focusing on categories can be

done by selecting their checkboxes, or using a shadow highlight brushing operation on

the secondary visualization (+FLUI). Brushing can be done by tapping on the cat-

egory’s bar, its name, or by finger-tracing around them (e.g., drawing a circle). This

will highlight the selected categories, and will update the linked treemap accordingly.

Highlighting information about the selected vulnerability categories allows users to

focus on them, while the background information helps users maintain cognizance of

the overall code quality. We note that in some cases, a category with a particularly

large number of vulnerabilities will occupy most of the bar, thus making it hard to

see the rest of the categories. Thus, the secondary visualization will enable users to

50

Figure 3.6: Relation between Cognitive Dimensions and four select objectives of a
CSCR tool. The figure can be read following the arrows, e.g., the arrow from FLUI
to Collaboration indicates that Fluidity supports Collaboration.

zoom-in/out to focus on the desired categories.

3.7 Discussion

In this section, we reflect on the results from our evaluations to discuss the effect

of five Cognitive Dimensions on achieving Cesar’s objectives (see Figure 3.6), and

provide general recommendations for collaborative code review tools based on the

Cognitive Dimensions framework.

Fluidity (FLUI). Fluidity is useful for all four objectives of a collaborative code

review tool. A fluid interface does not compel the user to perform many actions to ful-

fill a certain task, thus reduces disruptions to the code review workflow. In particular,

without fluidity, the user would be consumed in the many steps required to perform a

task, negatively affecting collaboration between team members, and distracting them

from the overall code quality and from analyzing specific vulnerabilities. A user ab-

sorbed by the task at hand is less likely to have discussions with their teammates that

might break their line of thought, and they might be reluctant to redo all these steps

to teach their teammate how to perform a certain task. In addition, being distracted

by the steps they need to perform takes the user’s focus off the original objective of

assessing the quality of the code and inspecting vulnerabilities. A system with poor

fluidity would also deter users from exploring—there is only so many times a user

51

may be willing to go through multiple steps to explore information. As evident by

Cesar’s usability evaluations, the UI of a collaborative code review tool should be

fluid enough to invite users to explore the different aspects of the data presented to

discover hidden trends, rather than settling for the most obvious explanations.

Recommendation. It is important for a code review tool to have fluidity. The

tool should act as a transparent interaction medium; users should feel as if they are

directly interacting with their codebase, rather than the burden of learning a new

code review tool.

Low Cognitive Load (LCOG). A tool that reduces the cognitive load on users

is valuable for collaboration and exploration. Useful information should be available

to the user throughout the different steps taken to perform a task. Reducing the

load on the user’s working memory allows the user to be more open to discussion and

exploration. A tool that provides users with opportunities for exploration without

exerting too much cognitive effort is more likely to succeed in persuading them to

perform deeper analyses.

Recommendation. A code review tool should conserve the user’s cognitive re-

sources to the actual objective of reviewing their codebase, determining how to secure

it, and identifying critical issues.

Abstraction (ABST). Using the correct level of abstraction to present vulnerabil-

ity information supports exploration and helps the user assess the overall quality of the

codebase. Providing vulnerability information in an abstract form, while maintain-

ing closeness of mapping as discussed below, encourages the user to explore available

information and invokes their analysis mindset. Additionally, the difference in the

approach taken by the Findbugs and Cesar’s evaluators demonstrates the usefulness

of abstraction in preventing users from getting engrossed in the details of specific

vulnerabilities without being mindful of the big picture.

Recommendation. A collaborative code review tool should use abstractions to

invite the user to explore available information and to apprise the user of the overall

quality of the codebase.

52

Closeness of Mapping (CLOS). Closeness of mapping of the interface elements to

the domain motivates users to explore information provided by the code review tool,

and concentrate on vulnerability details. Thus, a visualization that maintains the

codebase hierarchy familiar to the developers allows them to build on their existing

knowledge of the codebase to review their code, looking for hidden patterns and

trends. In addition, it allows them to focus on the details of vulnerabilities, rather

than deciphering how the vulnerability information presented to them relates to their

code.

Recommendation. A code review tool should maintain closeness of representation

to the domain of software development, e.g., by maintaining the codebase hierarchy

in its visualizations. Users who are familiar with the structure of the information

do not have to go through the first steps of determining how to make sense of the

presented data, and could delve right into analyzing this data utilizing their existing

knowledge.

Visibility and Juxtaposability (V IJU). This dimension supports focusing on

details of specific vulnerabilities. As noted by Cesar’s evaluators, when vulnerability

information (such as its description and location in the codebase) is easily accessible

to the user without cognitive effort, the user can focus their attention on the specifics

of the vulnerability, identifying its criticality and how to solve it. Components that

are relevant to each other should be placed side-by-side to allow the user to easily

access the required information, making comparisons and inferences.

Recommendation. Components’ visibility and their placement juxtaposed allows

users to direct their cognitive resources to investigating vulnerability details, making

inferences and decisions, rather than on finding information in disparate parts of the

interface.

3.8 Limitations

Our usability evaluations of FindBugs and Cesar were done in a lab setting, which

may not necessarily reflect real-life scenarios. Participants evaluating the usability

of FindBugs and Cesar were not currently employed as developers, however, all of

53

our participants had industry programming experience. Finally, participants were

not familiar with the codebase analyzed, which could have influenced our results.

However, we did not focus on analyzing specific vulnerabilities, rather our study

explored participants’ general behaviour using the tools analyzed and how these tools

supported collaboration and exploration. In future studies, it would be interesting to

use a codebase with which participants are familiar.

3.9 Summary

We applied a user-centered approach to address the issue of usability of source code

analyzers. Usability evaluation was two fold: using the Cognitive Dimensions frame-

work and informed by the Cognitive Walkthrough method. We evaluated the usability

of the UI of FindBugs, one of the most popular open source code analyzers. To ad-

dress some of FindBugs’ usability issues we designed Cesar, which provides developers

and testers with a visual analysis environment to help them reduce risks of source

code security vulnerabilities. Cesar uses a vertical multitouch display as an interface,

and a treemap as its primary visualization element. The treemap presents vulner-

ability information while maintaining the codebase hierarchy familiar to developers.

We evaluated the usability of an initial Cesar prototype, and discussed additional

potentially useful features based on the evaluation. Our analysis shows that the pro-

totype is promising in promoting collaboration, exploration, and enabling developers

to focus on the overall quality of their code as well as inspect individual vulnerabili-

ties. Finally, we presented general recommendations for designing collaborative code

review tools.

While working on the research presented in this chapter, we recognized that the

problem of software security is a larger one, relating to the whole process of integrating

security in the development lifecycle. We recognized that usable security research is

mainly focused on security tools and methodologies, which is but a single aspect of

the process. In the following chapter, we present our work focusing on the overall

security process.

Chapter 4

Security in the Software Development Lifecycle

Despite current efforts, security vulnerabilities are discovered daily and threats are

increasing and changing [77], extending even to small companies [153]. Developers

are often viewed as “the weakest link in the chain” and are blamed for security

vulnerabilities [71,178]. However, simply expecting developers to keep investing more

efforts in security is unrealistic and unlikely to be fruitful [13].

To understand reasons for the persistence of software vulnerabilities, we designed

a qualitative study to explore steps that teams are taking to ensure the security of

their applications, how developers’ security knowledge influences the process, and

how security fits in (and sometimes conflicts with) the development workflow. We

interviewed 13 developers who described their tasks, their priorities, as well as tools

they use. During the data analysis, we recognized that our participants’ practices

and attitudes towards security formed two groups, each with trends distinguishable

from the other group. On comparing real-life security practices to best practices, we

also found significant deviations.

This chapter makes the following contributions.

• We present a qualitative study looking at real-life practices employed towards

software security.

• We amalgamate software security best practices extracted from the literature

into a concise list to assist further research in this area.

• We reflect on how well current security practices follow best practices, identify

significant pitfalls, and explore why these occur.

• Finally, we discuss opportunities for future research.

This work is published at the Symposium on Usable Privacy and Security (SOUPS). USENIX
Association, 2018. [20]

54

55

4.1 Study Design and Methodology

In this section, we present the study design, participant demographics, analysis

methodology, and limitations.

4.1.1 Interview Study Design

We designed a semi-structured interview study and received REB clearance. The

interviews targeted 5 main topics: general development activities, attitude towards

security, security knowledge, security processes, and software testing activities (see

Appendix A for the interview script). To recruit participants, we posted on devel-

opment forums and relevant social media groups, and announced the study to pro-

fessional acquaintances. We recruited 13 participants; each received a $20 Amazon

gift card for participation. Before the one-on-one interview, participants filled out a

demographics questionnaire. Each interview lasted approximately 1 hour, was audio

recorded, and later transcribed for analysis. Interviews were conducted in person

(n = 3) or through VOIP/video-conferencing (n = 10). Data collection was done

in 3 waves, each followed by preliminary analysis and preliminary conclusions [67].

We followed Glaser and Strauss’s [67] recommendation by concluding recruitment on

saturation (i.e., when new data collection does not add new themes or insights to the

analysis).

4.1.2 Participant Demographics

A project team consist of teams of developers, testers, and others involved in the

SDLC. Smaller companies may have only one project team, while bigger companies

may have different project teams for different projects. We refer to participants

with respect to their project teams; team i is referred to as Ti and P-Ti is the

participant from this team. We did not have multiple volunteers from the same

company. Our data contains information from 15 teams in 15 different companies

all based in North America; one participant discussed work in his current (T7) and

previous (T8) teams, another discussed his current work in T10 and his previous

work in T11. In our dataset, seven project teams build web applications and services,

56

Table 4.1: Participant demographics

Participant Company and team
Participant ID Gender Age Years Title SK Company size Team size1

P-T1 F 30 1 Software engineer 4 Large enterprise 20
P-T2 M 34 15 Software engineer 5 Large enterprise 12
P-T3 M 33 10 Software engineer 4 Large enterprise 10
P-T4 M 38 21 Software developer 4 SME 7
P-T5 M 34 12 Product manager 5 Large enterprise 7
P-T6 F 26 3 Software engineering analyst 3 Large enterprise 12
P-T7, P-T8? M 33 4 Senior web engineer 4 SME – n/a? 3
P-T9 M 34 5 Software developer 3 Large enterprise 20
P-T10, P-T11? M 33 8 Software engineer 2 SME – SME? 5
P-T12 M 37 20 Principal software engineer 5 SME 10
P-T13 M 38 15 Senior software developer 2 SME 8
P-T14 M 26 3 Software developer 2 SME 4
P-T15 F 27 5 Junior software developer 4 Large enterprise 7

Years: years of experience in development
SK: self-rating of security knowledge 1(no knowledge) - 5(expert). SME: Small-Medium Enterprise
?: indicates participant’s previous company. 1 Team size for the current company

such as e-finance, online productivity, online booking, website content management,

and social networking. Eight teams deliver other types of software,e.g., embedded

software, kernels, design and engineering software, support utilities, and information

management and support systems. This classification is based on participants’ self-

identified role and products with which they are involved, and using Forward and

Lethbridge’s [63] software taxonomy. Categorizing the companies to which our teams

belong by number of employees [34], seven teams belong to SMEs (T4, T7, T10–

T14) and eight teams belong to large enterprises (T1–T3, T5, T6, T8, T9, T15). All

participants hold university degrees which included courses in software programming,

and are currently employed in development with an average of 9.35 years experience

(Md = 8). We did not recruit for specific software development methodologies. Some

participants indicated following a waterfall model or variations of Agile. See Table 4.1

for participant demographics.

4.1.3 Analysis

Data was analyzed using the Qualitative Content Analysis methodology [52, 80]. It

can be deductive, inductive, or a combination thereof. For the deductive approach,

the researcher uses her knowledge of the subject to build an analysis matrix and

57

codes data using this matrix [80]. The inductive method, used when there is no

existing knowledge of the topic, includes open coding, identifying categories, and

abstraction [80].

We employed both the deductive and inductive methods of content analysis. The

deductive method was used to structure our analysis according to the different de-

velopment stages. We built an initial analysis matrix of the main SDLC stages [152].

After a preliminary stage of categorizing interview data and discussions between the

researchers, the matrix was refined. The final analysis matrix defines the stages of

development as follows. Design is the stage where the implementation is conceptu-

alized and design decisions are taken; Implementation is where coding takes place;

Developer testing is where testing is performed by the developer; Code analysis is

where code is analyzed using automated tools, such as SATs; Code review is where

code is examined by an entity other than the developer; Post-development testing is

where testing and analysis processes taking place after the developer has committed

their code.

We coded interview data with their corresponding category from the final analy-

sis matrix, resulting in 264 unique excerpts. Participants talked about specific tasks

that we could map to the matrix stages, despite the variance in development method-

ologies. We then followed an inductive analysis method to explore practices and

behaviours within each category (development stage) as recommended by the content

analysis methodology. We performed open coding of the excerpts where we looked for

interesting themes and common patterns in the data. This resulted in 96 codes. Next,

data and concepts that belonged together were grouped, forming sub-categories. Fur-

ther abstraction of the data was performed by grouping sub-categories into generic

categories, and those into main categories. The abstraction process was repeated

for each stage of development. As mentioned earlier, during our analysis we found

distinct differences in attitudes and behaviours that were easily distinguishable into

two groups, we call them the security adopters and the security inattentive. We thus

present the emerging themes and our analysis of the two groups independently. Fig-

ure 4.1 shows an example of the abstraction process for developer testing data for the

security adopters. While all coding was done by a single researcher, two researchers

58

Figure 4.1: Security adopters: developer testing abstraction

met regularly to thoroughly and collaboratively review and edit codes, and group and

interpret the data. To verify the reliability of our coding, we followed best practices

by inviting a researcher who has not been involved with the project to act as a second

coder, individually coding 30% of the data. We calculated Krippendorff’s alpha [88]

to assess inter-rater reliability, and α = 0.89 (percentage of agreement = 91%). Ac-

cording to Krippendorff [89], alpha ≥ 0.80 indicates that coding is highly reliable

and that data is “similarly interpretable by researchers”. In case of disagreements,

we had a discussion and came to an agreement on the codes.

4.1.4 Limitations

Our study included a relatively small sample size, thus generalizations cannot be

made. However, our sample size followed the concept of saturation [67]; participant

recruitment continued until no new themes were emerging. Additionally, recruiting

participants through personal contacts could result in biasing the results. While we

cannot guarantee representativeness of a larger population, the interviewer previ-

ously knew only 3/13 participants. The remaining ten participants were previously

unknown to the researcher and each represented a different company. While inter-

views allowed us to explore topics in depth, they presented one perspective on the

team. Our data may thus be influenced by participants’ personal attitudes and per-

spectives, and may not necessarily reflect the whole team’s opinions. However, we

found that participants mainly described practices as encouraged by their teams.

59

4.2 Results: Security in Practice

We assess the degree of security integration in each stage of the SDLC as defined by

our final analysis matrix. As mentioned earlier, we found differences in participants’

attitudes and behaviours towards security that naturally fell into two distinct groups.

We call the first group the security adopters : those who consider security in the ma-

jority of development stages (at least four stages out of six1). The second group who

barely considered security or did not consider it at all form the security inattentive.

We chose the term inattentive, as it encompasses different scenarios that led up to

poor security approaches. These could be that security was considered and dismissed

or it was not considered at all, whether deliberately or erroneously. Table 4.2 presents

two tables, one for each group identified in our dataset. We classified practices during

a development stage as:

(•) secure: when security is actively considered, e.g., when developers avoid using

deprecated functions during the implementation stage.

(◦) somewhat secure: when security is not consistently considered, e.g., when threat

analysis is performed only if someone raises the subject.

(×) not secure: when security is not part of this stage, e.g., when developers do

not perform security testing.

(⊗) not performed : when a stage is not part of their SDLC (i.e., considered not

secure).

(?): when a participant did not discuss a stage during their interview, therefore

denoting missing data.

Table 4.2 highlights the distinction in terms of security between practices described

by participants from the security adopters and the security inattentive groups. The

overwhelming red and orange table for the security inattentive group visually demon-

strates their minimal security integration in the SDLC. Particularly, comparing each

stage across all teams shows that even though the security adopters are not consis-

tently secure throughout the SDLC, they are generally more attentive to security

than the other group. The worst stage for the security inattentive group is Code

1At least three stages in cases where we have information about four stages only. Note that this
is just a numeric representation and the split actually emerged from the data.

60

Table 4.2: The degree of security in the SDLC. The tables show participants’ teams
and the applications they develop according to the taxonomy in [63].
• : secure, ◦ : somewhat secure, × : not secure, ⊗ : not performed, ? : no data

(a) The Security Adopters

Application D
es

ig
n

Im
p

le
m

en
ta

ti
on

D
ev

el
op

er
te

st
in

g

C
o
d

e
an

al
y
si

s

C
o
d

e
re

v
ie

w

P
os

t-
d

ev
te

st
in

g

embedded software T1 × • × • • •
design and engineering software T3 ? • ? • • •
design and engineering software T5 • • ◦ • • •

info. management & decision support T11 ? • ◦ • • ?
support utilities T12 × • ◦ • • •
support utilities T14 × • • ⊗ • •

(b) The Security Inattentive

kernels T2 × • × ◦ ◦ •
website content management T4 ◦ ◦ ◦ ⊗ ◦ ◦

e-finance T6 × ◦ × × ◦ ◦
online productivity T7 × × × ⊗ × ◦

social networking T8 × × × ⊗ × •
embedded software T9 • • ◦ ⊗ ◦ ◦

online booking T10 ◦ ◦ × ⊗ ◦ ⊗
online productivity T13 × • × ⊗ ◦ •
online productivity T15 × × × × × ×

analysis, which is either not performed or lacks security, followed by the developer

testing stage, where security consideration is virtually non-existent.

We initially suspected that the degree of security integration in the SDLC would

be directly proportional to the company size. However, our data suggests that it

is not necessarily an influential factor. In fact, T14, the team from the smallest

company in our dataset, is performing much better than T6, the team from the

largest company in the security inattentive group. Additionally, we did not find

evidence that development methodology influenced security practices.

Although our dataset does not allow us to make conclusive inferences, it shows

an alarming trend of low security adoption in many of our project teams. We now

discuss data analysis results organized by the six SDLC stages defined in our analysis

61

matrix. All participants discussed their teams’ security policies, as experienced from

their perspectives, and not their personal preferences. Results, therefore, represent

the reported perspectives of the developers in each team.

4.2.1 Exploring Practices by Development Stage

We found that the prioritization of security falls along a spectrum: at one end,

security is a main priority, or it is completely ignored at the other extreme. For each

SDLC stage, we discuss how security was prioritized, present common trends, and

highlight key messages from the interviews. Next to each theme we indicate which

group contributed to its emergence: (SA) for the security adopters, (SI) for the

security inattentive, and (SA/SI) for both groups. Table 4.3 provides a summary

of the themes.

I. Design Stage

We found a large gap in security practices described by our participants in the design

stage. This stage saw teams at all points on the security prioritization spectrum,

however, most participants indicated that their teams did not view security as part of

this stage. Our inductive analysis revealed three emerging themes reflecting security

prioritization, with one theme common to both the security adopters and the security

inattentive, and one exclusive to each group.

Security is not considered in the design stage. (SA/SI) Most participants

indicated that their teams did not apply security best practices in the design stage.

Although they did not give reasons, we can infer from our data (as discussed in other

stages) that this may be because developers mainly focus on their functional design

task and often miss security [119], or because they lack the expertise to address

security. As an example of the disregard for security, practices described by one

participant from the security inattentive group violates the recommendation of simple

design; they intentionally introduce complexity to avoid rewriting existing code, and

misuse frameworks to fit their existing codebase without worrying about introducing

vulnerabilities. P-T10 explained how this behaviour resulted in highly complex code,

“Everything is so convoluted and it’s like going down rabbit holes, you see their code

62

and you are like ‘why did you write it this way?’ [...] It’s too much different custom

code that only those guys understand.” Such complexity increases the potential for

vulnerabilities and complicates subsequent stages [145]; efforts towards evaluating

code security may be hindered by poor readability and complex design choices.

Security consideration in the design stage is adhoc. (SI) Two developers

said their teams identify security considerations within the design process. In both

cases, the design is done by developers who are not necessarily formally trained in

security. Security issue identification is adhoc, e.g., if a developer identifies a com-

ponent handling sensitive information, this triggers some form of threat modelling.

In T10, this takes the form of discussion in a team meeting to consider worst case

scenarios and strategies for dealing with them. In T4, the team self-organizes with

the developers with most security competence taking the responsibility for designing

sensitive components. P-T4 said, “Some developers are assigned the tasks that deal

with authorization and authentication, for the specific purpose that they’ll do the se-

curity testing properly and they have the background to do it.” In these two teams,

security consideration in the design stage lies in the hands of the developer with se-

curity expertise; this implies that the process is not very robust. If this developer

fails to identify the feature as security-sensitive, security might not be considered at

all in this stage.

Security design is very important. (SA) Contrary to all others, one team

formally considers security in this stage with a good degree of care. P-T5 indicated

that his team considers the design stage as their first line of defense. Developers from

his team follow software security best practices [104, 123, 145], e.g., they perform

formal threat modelling to generate security requirements, focus on relevant threats,

and inform subsequent SDLC stages. P-T5 explains the advantages of considering

security from this early stage, “When we go to do a further security analysis, we have

a lot more context in terms of what we’re thinking, and people aren’t running around

sort of defending threats that aren’t there.”

63

II. Implementation Stage

Most participants showed general awareness of security during this stage. However,

many stated that they are not responsible for security and they are not required to

secure their applications. In fact, some developers reported that their companies do

not expect them to have any software security knowledge. Our inductive analysis

revealed three themes regarding security prioritization in this stage.

Security is a priority during implementation. (SA/SI) All security adopters

and two participants from the security inattentive group discussed the importance of

security during the implementation stage. They discussed how the general company

culture encourages following secure implementation best practices and using reliable

tools. Security is considered a developer’s responsibility during implementation, and

participants explained they are conscious about vulnerabilities introduced by errors

when writing code.

Developers’ awareness of security is expected when implementing. (SA/SI)

For those prioritizing security, the majority of security adopters and one participant

from the security inattentive group are expected to stay up-to-date on vulnerabili-

ties, especially those reported in libraries or third-party code they use. The manner

of information dissemination differs and corroborates previous research findings [179].

Some have a structured approach, such as that described by P-T1, “We have a whole

system. Whenever security vulnerability information comes from a third-party, [a

special team follows] this process: they create an incident, so that whoever is using

the third-party code gets alerted that, ‘okay, your code has security vulnerability’, and

immediately you need to address it.” Others rely on general discussions between devel-

opers, e.g., when they read about a new vulnerability. Participants did not elaborate

on if and how they assess the credibility and reliability of information sources. The

source of information could have a considerable effect on security; previous research

found that relying on informal programming forums might lead to insecure code [11].

In Xiao et al.’s [179] study, developers reported taking the information source’s thor-

oughness and reputation into consideration to ensure trustworthiness.

Security is not a priority during implementation. (SI) On the other end

of the security prioritization spectrum, developers from the security inattentive group

64

prioritize functionality and coding standards over security. Their primary goal is to

satisfy business requirements of building new applications or integrating new features

into existing ones. Some developers also follow standards for code readability and

efficiency. However, security is not typically considered a developer’s responsibility,

to the extent that there are no consequences if a developer introduces a security

vulnerability in their code. P-T7 explained, “If I write a bad code that, let’s say,

introduced SQL injection, I can just [say] ‘well I didn’t know that this one introduces

SQL injection’ or ‘I don’t even know what SQL injection is’. [...] I didn’t have to

actually know about this stuff [and] nobody told me that I need to focus on this stuff.”

This statement is particularly troubling given that P-T7 has security background,

but feels powerless in changing the perceived state of affairs in his team.

Our analysis also revealed that some developers in the security inattentive group

have incomplete mental models of security. This led to the following problematic

manifestations, which could explain their poor security practices.

Developers take security for granted. (SI) We found, aligning with previous

research [119], that developers fully trust existing frameworks with their applications’

security and thus take security for granted. Our study revealed that these teams do

not consider security when adopting frameworks, and it is unclear if, and how, these

frameworks’ security is ever tested. To partially address this issue, T4 built their own

frameworks to handle common security features to relieve developers of the burden of

security. This approach may improve security, however verifying frameworks’ security

is an important, yet missing, preliminary step.

Developers misuse frameworks. (SI) Despite their extreme reliance on frame-

works for security, developers in T10 do not always follow their recommended prac-

tices. For example, although P-T10 tries to follow them, other developers in his team

do not; they occasionally overlook or work-around framework features. P-T10 ex-

plains, “I have expressed to [the team] why I am doing things the way I am, because

it’s correct, it’s the right way to do it with this framework. They chose to do things

a completely different way, it’s completely messed up the framework and their code.

They don’t care, they just want something that they feel is right, and you know, what-

ever.” Such framework misuse may result in messy code and could lead to potential

65

vulnerabilities [145]. Although frameworks have shown security benefits [143], it is

evident that the manner by which some teams are currently using and relying on

them is problematic.

Developers lack security knowledge. (SI) Developers from the security inat-

tentive group vary greatly in their security knowledge. Some have haphazard knowl-

edge; they only know what they happen to hear or read about in the news. Oth-

ers have formed their knowledge entirely from practical experience; they only know

what they happen to come across in their work. Developers’ lack of software secu-

rity knowledge could explain why some teams are reluctant to rely on developers for

secure implementation. P-T7 said, “I think they kind of assume that if you’re a de-

veloper, you’re not necessarily responsible for the security of the system, and you [do]

not necessarily have to have the knowledge to deal with it.” On the other hand, some

developers have security background, but do not apply their knowledge in practice, as

it is neither considered their responsibility nor a priority. P-T7 said, “I recently took

an online course on web application security to refresh my knowledge on what were

the common attacks on web applications [...] So, I gained that theoretical aspect of

it recently and play[ed] around with a bunch of tools, but in practice I didn’t actually

use those tools to test my software to see if I can find any vulnerability in my own

code because it’s not that much of a priority.”

Developers perceive their security knowledge inaccurately. (SI) We iden-

tified a mismatch between developers’ perception of their security knowledge and

their actual knowledge. Some developers do not recognize their secure practices as

such. When asked about secure coding methods, P-T6 said, “[The] one where we

stop [cross-site scripting]. That’s the only one I remember I explicitly used. Maybe I

used a couple of other things without knowing they were security stuff.” In some in-

stances, our participants said they are not addressing security in any way. However,

after probing and asking more specific questions, we identified security practices they

perform which they did not relate to security.

Furthermore, we found that some developers’ mental model of security revolves

mainly around security functions, such as using the proper client-server communica-

tion protocol. However, conforming with previous research [179], it does not include

66

software security. For example, P-T9 assumes that following requirements generated

from the design stage guarantees security, saying “if you follow the requirements, the

code is secure. They take those into consideration.” However, he mentioned that re-

quirements do not always include security. In this case, and especially by describing

requirements as a definite security guarantee, the developer may be referring to se-

curity functions (e.g., using passwords for authentication) that he would implement

as identified by the requirements. However, the developer did not discuss vulnerabil-

ities due to implementation mistakes that are not necessarily preventable by security

requirements.

Our study also revealed the following incident which illustrates how Vulnera-

bility discovery can motivate security (SI) and improve mental models. De-

velopers in T13 became more security conscious after discovering a vulnerability in

their application. P-T13 said, “We started making sure all of our URLs couldn’t be

manipulated. [..] If you change the URL and the information you are looking at, [at

the] server side, we’d verify that the information belongs to the site or the account

you are logged in for.” Discovering this vulnerability was eye-opening to the team;

our participant said that they started thinking about their code from a perspective

they had not been considering and they became aware that their code can have un-

desirable security consequences. In addition, this first-hand experience led them to

the knowledge of how to avoid and prevent similar threats.

III. Developer Testing Stage

Across the vast majority of our participants, whether adopters or inattentive, se-

curity is lacking in the developer testing stage. Functionality is developers’ main

objective; they are blamed if they do not properly fulfil functional requirements, but

their companies do not hold them accountable if a security vulnerability is discov-

ered. P-T7 said, “I can get away with [introducing security bugs] but with other things

like just your day-to-day developer tasks where you develop a feature and you intro-

duce a bug, that kind of falls under your responsibility. Security doesn’t.” Thus, any

security-related efforts by developers are viewed as doing something extraordinary.

For example, P-T2 explained, “If I want to be the hero of the day [and] I know there’s

67

a slight possible chance that these can be security vulnerabilities, [then] I write a test

and submit it to the test team.” We grouped participants’ approaches to security

during this stage into four categories.

Developers do not test for security. (SA/SI) The priority at this stage is

almost exclusively functionality; it increases in scope until the developer is satisfied

that their code is fulfilling functional requirements and does not break any existing

code. And even then, these tests vary in quality. Some developers perform adhoc

testing or simply test as a sanity check where they only verify positive test cases

with valid input. Others erroneously, and at times deliberately, test only ideal-case

scenarios and fail to recognize worst-case scenarios. The majority of developers do not

view security as their responsibility in this stage; instead they are relying on the later

SDLC stages. P-T2 said, “I usually don’t as a developer go to the extreme of testing

vulnerability in my feature, that’s someone else’s to do. Honestly, I have to say, I

don’t do security testing. I do functional testing.” The participant acknowledged the

importance of security testing, however, this task was considered the testing team’s

responsibility as they have more knowledge in this area.

Security is a priority during developer testing. (SA) As an exception, our

analysis of P-T14’s interview indicates that his company culture emphasizes the im-

portance of addressing security in this stage. His team uses both automated and

manual tests to ensure that their application is secure and is behaving as expected.

P-T14’s explained that the reason why they prefer to incorporate security in this

stage was that it is more cost efficient to address security issues early in the SDLC.

He explained, “We have a small company, so it’s very hard to catch all the bugs after

release.”

Developers test for security fortuitously. (SA) In other cases, security is

not completely dismissed, yet it is not an explicit priority. Some security adopters

run existing test suites that may include security at varying degrees. These test

suites include test cases that any application is expected to pass, however, there

is not necessarily a differentiation between security and non-security tests. Some

developers run these tests because they are required to, without actual knowledge

of their purpose. For example, P-T3 presumes that since his company did not have

68

security breaches, security must be incorporated in existing test suites. He explained,

“[Security] has to be there because basically, if it wasn’t, then our company would have

lots of problems.”

Developers’ security testing is feature-driven. (SI) In another example

where security is not dismissed, yet not prioritized, one participant from the security

inattentive group (out of the only two who perform security testing), considers that

security is not a concern as his application is not outward facing, i.e., it does not

involve direct user interaction. P-T9 explained, “Security testing [pause] I would say

less than 5%. Because we’re doing embedded systems, so security [is] pretty low in

this kind of work.” While this may have been true in the past, the IoT is increasingly

connecting embedded systems to the Internet and attacks against these systems are

increasing [72]. Moreover, classifying embedded systems as relatively low-risk is par-

ticularly interesting as it echoes what Schneier [25] described as a road towards “a

security disaster”. On the other hand, P-T4 explained that only features that are

classified as sensitive in the design stage are tested, due to the shortage in security

expertise. As the company’s only developer with security background, these features

are assigned to P-T4. Other developers in T4 do not have security experience, thus

they do not security-test their code and they are not expected to.

IV. Code Analysis Stage

Eight developers reported that their teams have a mandatory code analysis stage.

Participants from the security adopters group mentioned that the main objectives in

this stage is to verify the code’s conformity to standards and in-house rules, as well as

detect security issues. On the other hand, participants from the security inattentive

group generally do not perform this stage, and rarely for security.

Security is a priority during code analysis. (SA) All security adopters who

perform this stage reported that security is a main component of code analysis in

their team. T5 mandates analysis using multiple commercial tools and in-house tools

before the code is passed to the next stage. T3 has an in-house tool that automates

the process of analysis to help developers with the burden of security. P-T3 explained,

“[Our tool] automatically does a lot of that for us, which is nice, it does static analysis,

69

things like that and won’t even let the code compile if there are certain requirements

that are not met.” One of the advantages of automating security analysis is that

security is off-loaded to the tools; P-T3 explains that security “sort of comes for

free”.

Security is a secondary objective during code analysis. (SI) P-T2 ex-

plained that in his team, developers’ main objective when using a SAT is to verify

conformity to industry standards. Although they might check security warnings,

other security testing methods are considered more powerful. P-T2 explained, “[SAT

name] doesn’t really look at the whole picture. [...] In terms of: is it similar to a

security vulnerability testing? No. Pen testers? No. It’s very weak.” In addition to

the lack of trust in SATs’ ability to identify security issues, and similar to previous

research (e.g., [79]), our participants complained about the overwhelming number

false positives and irrelevant warnings.

Developers rarely perform code analysis, never for security. (SI) Code

analysis is not commonly part of the development process for the security inattentive

group. According to their developers, T2, T6, and T15 use SATs, but not for secu-

rity. Code analysis is performed as a preliminary step to optimize code and ensure

readability before the code review stage, with no consideration to security.

Reasons for underusing SATs were explored in other contexts [79]. The two main

reasons in our interviews were that their use was not mandated or that developers

were unaware of their existence. We found that Developers vary in awareness

of analysis tools. (SI) In addition to those unaware, some developers use SATs

without fully understanding their functionality. P-T10 does not use such tools since

it is not mandated and his teammates are unlikely to do so. He said, “I know that

there’s tools out there that can scan your code to see if there’s any vulnerability risks

[...] We are not running anything like that and I don’t see these guys doing that. I

don’t really trust them to run any kind of source code scanners or anything like that. I

know I’m certainly not going to.” Despite his awareness of the potential benefits, he is

basically saying no one else is doing it, so why should I? Since it is not mandatory or

common practice, running and analyzing SATs reports would add to the developer’s

workload without recognition for his efforts.

70

V. Code Review Stage

Most security adopters say that security is a primary component in this stage. Re-

viewers examine the code to verify functionality and to look for potential security

vulnerabilities. P-T14 explained, “We usually look for common mistakes or bad prac-

tices that may induce attack vectors for hackers such as, not clearing buffers after

they’ve been used. On top of that, it’s also [about the] efficiency of the code.”

Contrarily, the security inattentive discount security in this stage—security is ei-

ther not considered, or is considered in an informal and adhoc way and by unqualified

reviewers. Code review can be as simple as a sanity check, or a walkthrough, where

developers explain their code to other developers in their team. Some reviewers are

thorough, while others consider reviews a secondary task, and are more inclined to

accept the code and return to their own tasks. P-T10 explained, “Sometimes they

just accept the code because maybe they are busy and they don’t want to sit around and

criticize or critically think through everything.” Moreover, reviewers in T9 examine

vulnerabilities to assess their impact on performance. P-T9 explained, “[Security in

code review is] minimum, I’d say less than 5%. So, yeah you might have like buffer

overflow, but then for us, that’s more of the stability than security issue.” We grouped

participants’ descriptions of the code review stage into four distinct approaches.

Code review is a formal process that includes security. (SA) All security

adopters mentioned that their teams include security in this stage. For some teams,

it is a structured process informed by security activities in previous stages. For exam-

ple, security-related warnings flagged during the code analysis phase are re-examined

during code reviews. Reviewers can be senior developers, or an independent team.

Being independent, reviewers bring in a new perspective, without being influenced

by prior knowledge, such as expected user input. P-T5 said, “We do require that all

the code goes through a security code review that’s disconnected from the developing

team, so that they’re not suffered by that burden of knowledge of ‘no one will do this’,

uh, they will.” Sometimes reviewers might not have adequate knowledge of the appli-

cations. In such cases, T1 requires developers to explain the requirements and their

implementation to the reviewers. P-T1 said, “You have to explain what you have

done and why. [...] so that they need not invest so much time to understand what is

71

the problem [...] Then they will do a comparative study and they will take some time

to go over every line and think whether it is required or not, or can it be done in some

other way.” Although cooperation between different teams is a healthy attitude, there

might be a risk of developers influencing the reviewers by their explanation. P-T13

indicated the possibility of creating a bias when reviewers are walked-through the

code rather than looking at it with a fresh set of eyes. He said, “umm, I have not

really thought about [the possibility of influencing the reviewers.] [...] Maybe. Maybe

there is a bit.”

Preliminary code review is done as a checkpoint before the formal re-

view. (SA) This is an interesting example of developers collaborating with reviewers.

P-T1 mentioned that reviewers sometimes quickly inspect the code prior to the for-

mal review process and in case of a potential issue, they provide the developer with

specific testing to do before the code proceeds to the review stage. This saves review-

ers time and effort during the formal code review, and it could help focus the formal

process on intricate issues, rather than being overwhelmed with simple ones.

Security is not considered during code review. (SI) The majority of the

security inattentive participants explained that their teams’ main focus for code re-

view is assessing code efficiency and style, and verifying how well new features fulfill

functional requirements and fit within the rest of the application. In fact, some par-

ticipants indicated that their teams pay no attention to security during this stage. It

is either not the reviewers’ responsibility, or is not an overall priority for the team.

P-T7 explained that because reviewers are developers, they are not required to focus

on security. In addition to not being mandated, our participants explained that most

developers in their teams do not have the necessary expertise to comment on security.

P-T7 said, “Probably in the two years that I’ve been working, I never got feedback [on]

the security of my code [...] [Developers] don’t pay attention to the security aspect and

they can’t basically make a comment about the security of your code.”

Security consideration in code review is minimal. (SI) According to de-

velopers from the security inattentive group, some of their teams pay little attention

to security during code review only by looking for obvious vulnerabilities. Addition-

ally, this may only be performed if the feature is security-sensitive. In either case,

72

teams do not have a formal method or plan, and reviewers do not necessarily have the

expertise to identify vulnerabilities [119]. Our participants explained that reviewers

are either assigned or chosen by the developer, based on the reviewer’s qualifications

and familiarity with the application. However, this can have serious implications,

e.g., those who have security expertise will carry the burden of security reviews in

addition to their regular development tasks. P-T12 explained that this caused the

individuals who had security knowledge to become “overloaded”. Although our data

does not allow us to make such explorations, it is important to investigate the effect of

workload on the quality of code reviews, and whether it has an effect on developers’

willingness to gain security knowledge. For example, does being the person desig-

nated to do security code reviews motivate developers to gain security knowledge?

Or would they rather avoid being assigned extra reviewing workload?

VI. Post-Development Testing Stage

Security is a priority during post-development testing. (SA) Three partici-

pants from the security adopters group mentioned that their project teams have their

own testers that evaluate different aspects, including security. The general expec-

tation is that the testers would have some security knowledge. Additionally, P-T12

mentioned that his company hires external security consultants for further security

testing of their applications. However, because the testing process by such experts

is usually “more expensive and more thorough,” (P-T12), they usually postpone this

step until just before releasing the application. We identified two distinct motivations

for performing security testing at this stage: Post-development testing is used to

discover security vulnerabilities, or for final verification. (SA) Unsurprisingly,

the majority of security adopters rely on post-development testing as an additional

opportunity to identify and discover security vulnerabilities before their applications

are put out to production. T1, on the other hand, expects security post-development

testing to reveal zero vulnerabilities. P-T1 explained, “If they find a security issue,

then you will be in trouble. Everybody will be at your back, and you have to fix it as

soon as possible.” Thus, this stage is used as a final verification that security prac-

tices in the previous stages were indeed successful in producing a vulnerability-free

73

application.

Similar to the code review stage, we found evidence of collaboration between the

development and the testing team, however, Testers have the final approval. (SA) .

Testers would usually discuss with developers to verify that they understand the re-

quirements properly, since they do not have the same familiarity with the application

as developers. However, P-T5 explained that although developers can challenge the

testing team’s analysis, they cannot dismiss their comments without justification.

Addressing security issues is consistently a priority. P-T5 said, “[The testing team

will] talk to the development teams and say, ‘here’s what we think of this’, and the

development team will sometimes point out and say, ‘oh, you missed this section over

here’ [...] but one of the things is, we don’t let the development teams just say, ‘oh,

you can’t do that because we don’t want you to’. So the security teams can do whatever

they want.” Cooperation between developers and testers could help clear ambiguities

or misunderstandings. In T5 testers have some privilege over developers; issues raised

by testers have to be addressed by developers, either by solving them or justifying

why they can be ignored. P-T5 hinted that disagreements may arise between different

teams, but did not detail how they are resolved. Further exploration of this subject is

needed, taking into consideration the level of security knowledge of the development

team compared to the testing team.

Security is prioritized in post-development testing for all of our security adopters,

where they rely on an independent team to test the application as a whole. On the

other hand, although post-development testing appears to be common to all teams

from the security inattentive group (with the exception of T10), it often focuses

primarily on functionality, performance and quality analysis, with little to no regard

for security. Our analysis revealed the following insights and approaches to post-

development security testing.

Security is not considered in post-development testing. (SI) According

to their developers, two teams (T10, T15) do not consider security during this stage.

T10 does not perform any testing, security or otherwise. The company to which

T15 belongs has its own Quality Analysis (QA) team, though they do not perform

security testing. P-T15 said, “I’ve never seen a bug related to security raised by QA.”

74

The case of T15 is particularly concerning; many teams rely on this stage to address

software security, while T15 does not. According to our data, security is not part of

the development lifecycle in T15. It would be interesting to further explore why some

teams completely ignore software security, and what factors could encourage them to

adopt a security initiative.

Post-development testing plans include a security dimension. (SI) As

mentioned earlier, P-T2 relies mainly on this stage for security testing, In addition,

P-T6, and P-T13 say that their teams consider security during this stage. However,

there seems to be a disconnect between developers and testers in T6; developers are

unaware of the testing process and consider security testing out of scope. Despite her

knowledge that security is included in this stage, P-T6 mentioned, “I don’t remember

any tester coming back and telling [me] there are [any] kinds of vulnerability issues.”

T13 started integrating security in their post-development testing after a newly hired

tester who decided to approach the application from a different perspective discovered

a serious security issue. P-T13 explained, “No one had really been thinking about

looking at the product from security standpoint and so the new tester we had hired,

he really went at it from ‘how can I really break this thing?’ [..] and found quite a

few problems with the product that way.” The starting point of security testing in T13

was a matter of chance. When an actual security issue was discovered in their code,

security was brought to the surface and post-development testing started addressing

security.

Through our analysis, we found that along the security prioritization spectrum,

there are cases where security in this stage is driven by different factors, as explained

below.

Some participants discussed that their team relies on a single person to handle

security, thus security consideration is driven by specific factors. For example, in T4,

Post-development security testing is feature-driven. (SI) . P-T4 is the only

developer in his company with security expertise, thus he is responsible for security.

He explained that his company has limited resources and few employees, thus they

focus their security testing efforts only on security-sensitive features (e.g., authenti-

cation processes), as flagged by the developers. Thus, the question is how reliable

75

are assessments in this case given that they are done by developers with limited se-

curity expertise? On the other hand, in T7, Post-development security testing

is adhoc. (SI) . P-T7 explained that they rely on a single operations-level engineer

who maintains the IT infrastructure and handles security testing. Thus, testing is

unplanned and could happen whenever the engineer has time or “whenever he de-

cides.” P-T7 erroneously [153] presumes their applications are risk-free since they

are a “small company”, and thus they are not an interesting target for cyberattacks.

Company size was used by some of our participants to justify their practices in multi-

ple instances. Although in our data we did not find evidence to support that company

size affects actual security practices, it shows our participants’ perception.

We also found that an external mandate to the company can be a driving factor for

security consideration. For example, P-T8 reported that his company needs to comply

with certain security standards, thus his team performs security testing when they are

expecting an external audit “to make sure the auditors can’t find any issue during the

penetration test.” In this case, Post-development security testing is externally-

driven. (SI) Such external pressure by an overseeing entity was described as “the

main” driving factor to schedule security testing; P-T8 explained that if it were not

for these audits, his team would not have bothered with security tests. Mandating

security thus proved to be effective in encouraging security practices in a team that

was not proactively considering it.

As evidenced by our data, the security inattentive group’s security practices, if

existent, are generally informal, unstructured, and not necessarily performed by those

qualified. The main focus is delivering features to customers; security is not neces-

sarily a priority unless triggered, e.g., by experiencing a security breach or expecting

an external audit.

4.2.2 The adopters vs. the Inattentive

In general, security practices appear to be encouraged in teams to which the security

adopters belong. In contrast, as explained by participants from the security inatten-

tive group, their teams’ main priority is functionality; security is an afterthought.

76

Table 4.3: Summary of themes emerging from the security adopters and the security
inattentive, and common themes between the two groups. Although common themes
exist, driving factors for these themes may differ. See Section 4.2.2 for more details.

Security Adopters Themes Common Themes Security Inattentive Themes

Design

· Security design is very important · Security is not considered in the
design stage

· Security consideration in the design stage is
adhoc

Implementation

· Security is a priority during im-
plementation
· Developers’ awareness of secu-

rity is expected when imple-
menting

· Security is not a priority during implementa-
tion
· Developers take security for granted
· Developers misuse frameworks
· Developers lack security knowledge
· Developers perceive their security knowledge

inaccurately
· Vulnerability discovery can motivate security

Developer Testing

· Developers test for security fortuitously
· Security is a priority during developer

testing

· Developers do not test for secu-
rity

· Developers’ security testing is feature-driven

Code Analysis

· Security is a priority during code analysis · Security is a secondary objective during code
analysis
· Developers rarely perform code analysis, never

for security
· Developers vary in awareness of analysis tools

Code Review

· Code review is a formal process that in-
cludes security
· Preliminary code review is done as a

checkpoint before the formal review

· Security is not considered during code review
· Security consideration in code review is mini-

mal

Post-development Testing

· Security is a priority during post-
development testing
· Post-development testing is used to dis-

cover security vulnerabilities, or for final
verification
· Testers have the final approval

· Security is not considered in post-development
testing
· Post-development testing plans include a secu-

rity dimension
· Post-development security testing is feature-

driven
· Post-development security testing is adhoc
· Post-development security testing is

externally-driven

Contrary to a trend towards labelling developers as “the weakest link” [71], our anal-

ysis highlights that poor security practices is a rather complex problem that extends

beyond the developer. Just as we have identified instances where developers lack secu-

rity knowledge or lack motivation to address security, we have also identified instances

77

where security was ignored or dismissed by developers’ supervisors, despite the de-

veloper’s expertise and interest. It is especially concerning when security is dismissed

by those high in the company hierarchy. As an extreme case, P-T15 reported zero

security practices in their SDLC; she explained “To be honest, I don’t think anybody

cares about [security]. I’ve never heard or seen people talk about security at work [...]

I did ask about this to my managers, but they just said ‘well, that’s how the company

is. Security is not something we focus on right now.’”

It was interesting to find that all our participants who identified themselves as

developers of web applications and services, i.e., in their current daily duties, (namely,

P-T4, P-T6, P-T7, P-T8, P-T10, P-T13, P-T15) fall in the security inattentive group.

Specific reasons for this are unclear. It may be because web-development is generally

less mature and has a quick pace [137], and teams are eager to roll-out functionality to

beat their competitors. In such cases, functional requirements may be prioritized and

security may be viewed as something that can be addressed as an update, essentially

gambling that attackers will miss any vulnerabilities in the intervening time. Teams

who have not yet become victims may view this as a reasonable strategy, especially

since patching generally does not requires end-user involvement (e.g., web server fixes

do not require users to update their software), making it a less complicated process.

However, since participants building other types of software also fall in the security

inattentive group, it is hard to draw a generic conclusion that web-development is

particularly insecure.

Table 4.3 summarizes the themes that emerged from our analysis. As expected, we

found conflicting themes between the security adopters and the security inattentive

group, where the more secure themes consistently belongs to the security adopters.

However, our analysis also revealed common themes (see Table 4.3), some of which

are promising while others are problematic for security. On the positive side, partici-

pants from both groups discussed developers’ role in security during implementation.

On the other hand, participants from both groups also indicated a lack of attention

to security in the design stage. Reasons leading to these common themes sometimes

vary. Consider the theme Developers do not test for security ; the security inattentive

group ignored security testing because developers often lack the knowledge necessary

78

to perform this task. Whereas for the security adopters, the reason is that security

testing is not included in developers’ tasks even if they have the required knowl-

edge. In Section 4.4.2, we discuss factors that we identified as influential to security

practices.

4.3 Software Security Best Practices

After exploring real life security practices, how do these compare to security best

practices? To answer this question, we amalgamate best practices into a concise list

of the most common recommendations. In Section 4.4, we discuss the relationship be-

tween practices found in our study and best practices. Recall, we offered background

on popular sources of software security best practices in Section 2.2.

Available resources for security best practices vary in their organization and their

presentation style, e.g., they vary in technical details. Practitioners may find difficulty

deciding on best practices to follow and establishing processes within their organi-

zations [108, 133, 166]. To help frame security practices we identified, we collected

recommendations from the sources discussed in Section 2.2 to compose a concise set

of best practices. This resulted in an initial set of 57 unorganized recommendations

varying in format and technical details. We then grouped related recommendations,

organized them in high-level themes, and iterated this process to finally produce the

following 12 best practices. Other amalgamations may be possible, but we found this

list helpful to interpret our study results. The list could be of independent interest

to complementary research in this area.

B1 Identify security requirements. Identify security requirements for your appli-

cation during the initial planning stages. The security of the application throughout

its different stages should be evaluated based on its compliance with security re-

quirements.

B2 Design for security. Aim for simple designs because the likelihood of implemen-

tation errors increases with design complexity. Architect and design your software

to implement security policies and comply with security principles such as: secure

defaults, default deny, fail safe, and the principle of least privilege.

B3 Perform threat modelling. Use threat modelling to analyze potential threats

79

to your application. The result of threat modelling should inform security practices

in the different SDLC stages, e.g., for creating test plans.

B4 Perform secure implementation. Adopt secure coding standards for the pro-

gramming language you use, e.g., validate input and sanitize data sent to other

systems, and avoid using unsafe or deprecated functions.

B5 Use approved tools and analyze third-party tools’ security. Only use

approved tools, APIs, and frameworks or those evaluated for security and effective-

ness.

B6 Include security in testing. Integrate security testing in functional test plans

to reduce redundancy.

B7 Perform code analysis. Leverage automated tools such as SATs to detect

vulnerabilities like buffer overflows and improper user input validation.

B8 Perform code review for security. Include security in code reviews and look

for common programming errors that can lead to security vulnerabilities.

B9 Perform post-development testing. Identify security issues further by using

a combination of methods, e.g., dynamic analysis, penetration testing, or hiring

external security reviewers to bring in a new perspective.

B10 Apply defense in depth. Build security in all stages of the SDLC, so that

if a vulnerability is missed in one stage, there is a chance to eliminate it through

practices implemented in the remaining stages.

B11 Recognize that defense is a shared responsibility. Address software security

as a collective responsibility of all SDLC entities, e.g., developers, testers, and

designers.

B12 Apply security to all applications. Secure low risk applications and high risk

ones. The suggested effort spent on security can be derived from assessing the value

of assets and the risks, however, security should not be ignored in even the lowest

risk applications.

80

4.4 Interpretation of Results

In this section, we compare security practices from our study to best practices, present

factors influencing those practices, and discuss future research directions. We com-

ment on teams’ practices as described by their developers (our participants), recog-

nizing that we have only one perspective per team. Compliance (or lack thereof) to

all best practices is not proof of a secure (or insecure) SDLC. However, this list of

widely agreed upon best practices allows us to make preliminary deduction on the

software security status quo.

4.4.1 Current Practices versus Best Practices

Our analysis showed different approaches to security and varying degrees of com-

pliance with best practices. The best practice with most compliance is B9; almost

all participants reported that their team performs security post-development testing

(to varying degrees). Contrarily, most do not apply defense in depth (B10); the se-

curity adopters do not consistently integrate security throughout the SDLC and the

security inattentive group relies mainly on specific stages to verify security (e.g., post-

development testing). In addition, security is generally not a part of the company

culture for the security inattentive group and they commonly delegate a specific per-

son or team to be solely responsible for security. This leads to adhoc processes and

violates B11: recognize that defense is a shared responsibility. Moreover, the security

inattentive group violates B12 by ignoring security in applications considered low-risk

without evidence that they performed proper risk analysis.

Deviations from best practices are apparent even from the design stage. The ma-

jority of participants indicate that their teams do not address security during design,

contradicting B1–B3. Some developers may even deliberately violate the Design for

security best practice (B2) to achieve their business goals and avoid extra work. On

the other hand, the two participants who discussed formal consideration of security in

design claim the advantages of having more informed development processes, identi-

fying all relevant threats and vulnerabilities, and not getting distracted by irrelevant

ones [145].

The implementation stage is particularly interesting; it shows the contradictions

81

between the security adopters and the security inattentive. Participants from both

groups perform secure implementation (B4), yet this only applied to three security

inattentive participants. For most of the security inattentive group, security is not

a priority and developers take security for granted, assuming that frameworks will

handle security. While frameworks have security benefits [143], each has its own se-

cure usage recommendations (e.g., [1]), often buried in their documentations, and

it is unclear if developers follow them. In fact, our study suggests that developers

misuse frameworks by circumventing correct usage to more easily achieve their func-

tional goals, another violation of B4. Moreover, despite their reliance on frameworks,

participants report that security is not factored in their teams’ framework choices

(violating B5).

We found non-compliance with best practices in other development stages as well.

For example, some teams do not include security in their functional testing plans, vio-

lating B6, and some teams do not perform code analysis, violating B7. Ignoring code

analysis is a missed opportunity for automatic code quality analysis and detection

of common programming errors [22]. Participants who said their teams use security

code analysis tools, do so to focus subsequent development stages on the more un-

usual security issues. Others do not review their code for security (violating B8);

rather code review is mainly functionality-focused. In some cases, participants said

that reviewers do not have the expertise to conduct security reviews, in others they

maybe overloaded with tasks, and sometimes code review plans simply do not include

security.

4.4.2 Factors Affecting Security Practices

Through close inspection of our results and being immersed in participants’ reported

experiences, we recognized factors that appear to shape their practices and that may

not be adequately considered by best practices. We present each factor and its conflict

with best practices, if applicable.

Division of labour. Best practices conflict with some of our teams’ division

of labour styles. Participants explained that some teams violate the Apply defense

in depth (B10) best practice because applying security in each SDLC stage conflicts

82

with their team members’ roles and responsibilities. In some teams, developers are

responsible for the functional aspect (i.e., implementation and functional testing) and

testers handle security testing. These teams are also violating B6, because integrat-

ing security in functional testing plans would conflict with the developers’ assigned

tasks. Complying with these best practices likely means they need to change the

team’s structure and re-distribute the assigned responsibilities. Teams may be reluc-

tant to make such changes [133] that may conflict with their software development

methodologies [99], especially since security is not their primary objective [71].

Security knowledge. We found that the expectation of security knowledge (or

lack thereof) directly affects the degree of security integration in developers’ tasks.

When security knowledge was expected, participants said that developers were as-

signed security tasks (e.g., performing security testing). On the other hand, we found

that developers’ (expected) lack of security knowledge resulted in lax security prac-

tices (Security is not considered in the design stage, Security is not a priority during

implementation, Developers do not test for security, and Security is not considered

during code review). While these violate best practices (e.g., B1, B4 B6, B8), it is

unrealistic to rely on developers to perform security tasks while lacking the exper-

tise. From teams’ perspective, they are relieving developers from the security burden.

This may be a reasonable approach, loosely following recommendations of taking the

developer out of the security loop when possible [13, 71]. Another obvious, yet com-

plicated, answer would be to educate developers [104]. However, companies may lack

the resources to offer security training, and there is evidence that developers remain

focused mainly on their primary functional task and not security [119].

Company culture. Another influential factor indicated by participants is the

teams’ cognizance of security and whether it is part of the company culture. In teams

where security was reportedly advocated, developers spoke of security as a shared re-

sponsibility (conforming with B11). In instances where security was dismissed, par-

ticipants said that developers did not consider security, and even those with security

knowledge were reluctant to apply it. For successful adoption of security, initiatives

should emerge from upper management and security should be rooted in the com-

pany’s policies and culture. Developers are more likely to follow security practices if

83

mandated by their company and its policies [179]. Integrating and rewarding security

in the company culture can significantly motivate security practices [178, 179], com-

pared to instances where security is being viewed as something that only “heroes” do

if there is time.

Resource availability. Some participants said their team decides their security

practices based on the available budget and/or employees who can perform security

tasks. As reported, some teams violate B10 as they do not have enough employees

who can perform all the recommended security tasks in addition to their original

workload. Also, others reportedly violate B9, because they neither have the budget to

hire external penetration testers, nor do their members have the expertise to perform

such post-development tests. For such companies, the price for conforming with these

best practice is too steep for little perceived gain. In other cases, participants said

their team strains their resources in ways that can be detrimental. For example, the

one developer with the most security knowledge is handed responsibility to identify

security-sensitive features and to verify the security of the team’s code. This is a

significant burden, yet with little support or guidance. Besides the obvious security

risks of such an approach, it may also lead to employee fatigue and ultimately to the

loss of valuable team members.

External pressure. Monitoring by an overseeing entity can drive teams to adopt

security practices to ensure they comply with its standards. Encouraging security

practices through external mandates is not new, e.g., the UK government mandated

that applications for the central government should be tested using the National

Technical Authority for Information Assurance CHECK scheme [9]. As a result of

this initiative, companies have improved their management and response to cyber

threats [8]. It would be interesting to explore how to mandate security practices in

companies, and how governments and not-for-profit agencies could support teams,

particularly those from the security inattentive group, to become more secure.

Experiencing a security incident. Participants reported that discovering a

84

vulnerability or experiencing a security breach first-hand is another factor that en-

couraged security practices and awareness in their teams. Despite extensive pub-

licity around security vulnerabilities, awareness of and commitment to security re-

mains low [139]. Our analysis shows that direct vulnerability discovery influenced

security practices more than hearing news-coverage of high-profile vulnerabilities

(e.g., [41, 160]). This can be explained by the optimistic bias [171]: the belief that

“misfortune will not strike me” [139]. Rhee et al. [139] found that the optimistic

bias strongly influences perception of security risks in Information Technology (IT).

It is even greater when the misfortune seems distant, without a close comparison

target. Thus, to overcome such bias, security training and awareness has to reach all

levels–from upper management to those directly involved in the development process.

Similar to Harbach and Smith’s [75] personalized privacy warnings which led users to

make more privacy-aware decisions, software security training should be personalized

and provide concrete examples of the consequences of these threats to the company.

We recommend that training should also not focus exclusively on threats; it should

provide concrete proactive steps with expected outcomes. Additionally, it should in-

clude case studies and first-hand accounts of security incidents, and approaches to

overcome them. Hence, security training moves from the theoretical world to the real

world, aiding in avoiding the optimism bias.

4.4.3 Future Research Directions

Security best practices advocate for integrating security starting from the early SDLC

stages. However, with limited resources and expertise, if a team can only address

security in post-development testing, is this team insecure? Or might this testing

be sufficient? Is the security inattentive group in our dataset really guilty of being

insecure? Or did they just find the cost of following security best practices too steep?

Our work highlights that best practices are lacking in terms of guiding development

teams to choose which best practices to follow based on their limited resources and

expertise.

For future research, we suggest devising a lightweight version of security best

practices and evaluating its benefit for teams that do not have enough resources to

85

implement security throughout the SDLC, or when implementing traditional security

practices would be too disruptive to their workflow. Additionally, teams that suc-

ceeded at building a security-oriented culture should be further explored to better

understand how others can adopt their approach. Further exploration of how to in-

corporate security in the company culture and evaluating its benefits can be a starting

point for more coherent security processes, since developers are more likely to follow

security practices if mandated by their company and its policy [179]. Particularly,

what lessons can be carried from the security adopters over to the security inatten-

tive group? Our work explores some of the issues surrounding secure development

practices. Surveys with a larger sample of companies and more stakeholders would

be an interesting next step.

4.5 Conclusion

Through interviews with developers, we investigated SDLC practices relating to soft-

ware security. Our analysis showed that real-life security practices differ markedly

from best practices identified in the literature. Best practices are often ignored, sim-

ply since compliance would increase the burden on the team; in their view, teams

are making a reasonable cost-benefit trade-off. Rather than blaming developers, our

analysis shows that the problem extends up in company hierarchies. Our results high-

light the need for new, lightweight best practices that take into account the realities

and pressures of development. This may include additional automation or rethinking

of secure programming practices to ease the burden on humans without sacrificing

security.

Chapter 5

Security Knowledge and Motivation

In the previous chapter, we focused on teams’ software security practices, how

these compare to best practices in the literature, and factors that may influence

security processes in real life. Thus, our analysis focused on quotations related to

practices in the different stages of the development. These quotations represent only

a subset of the interviews.

Through a second phase of analysis that includes the entirety of the interview

script, we draw our attention more to the human in the development loop—the de-

veloper. In our interviews we initially set out to explore developers’ knowledge of

software security and how they acquire this knowledge, hence RQ1 below. However,

our data analysis highlighted that even those with the necessary knowledge may lack

motivation towards software security. This motivated us to explore a second research

question, RQ2. The two research questions for this chapter are:

RQ1 How do developers acquire knowledge relating to software security?

RQ2 What are developers’ motivations towards software security?

Our data analysis revealed that knowledge and motivation are two intertwined

aspects that may influence security practices; motivation in itself is not enough if

the developer lacks security knowledge and, as it turns out, knowledge itself affects

motivation. In this chapter, by addressing our two research questions, we identify

opportunities and strategies for acquiring security knowledge (Section 5.2), explore

factors influencing developers’ motivation towards security (Section 5.3), as well as

the relation between motivation and security knowledge (Section 5.4).

Part of this chapter is published at SOUPS Workshop on Security Information Workers (WSIW).
USENIX Association, 2018. [19].

86

87

5.1 Using Grounded Theory for Analysis

We used Strauss and Corbin’s Grounded Theory methodology [159] to analyze our

interviews. Following Grounded Theory, we did not start with a preconceived theory;

rather we worked from the data to offer insights and enhance understanding of the

phenomenon under study.

Strauss and Corbin’s methodology involves three types of coding processes. Cod-

ing refers to abstracting and conceptualizing raw data [43]. Open coding is the first

coding step in Grounded Theory, in which data is analyzed and textual passages are

assigned descriptive codes. Next, through axial coding, the researcher looks for rela-

tionships and connections between open codes. This is followed by selective coding

to integrate categories and refine the theory. During selective coding, the researcher

identifies a central idea (core category) to which all the other categories relate. The

core category could either evolve out of the existing list of categories, or the re-

searcher may need to create a more abstract phrase that can include all the existing

categories [43].

To analyze our qualitative data, we performed open-coding through examining

the answer to each question in the interview script and assigning codes describing

the main themes or ideas discussed. The main researcher performed the open-coding,

however, codes were discussed with a second researcher whenever a new code was

created. Open coding was done using Atlas.ti on 600 unique excerpts and resulted in

a total of 170 open codes. We italicize and use a different font for our codes when

reporting.

“Learning from peers” is an example of an open code that we created when partic-

ipants indicated that they acquire security knowledge through interaction with their

colleagues. In the following quote, P-T111 explains how all his security knowledge

came from colleagues in the company where he works. He said, “I guess up until now,

any knowledge I have got of it has just been purely from peers, or anytime we bring in

a new employee and they have more knowledge about it. That’s where I kinda learn

1In this chapter, we refer to participants with respect to their teams as in the previous chapter.
However, participants who discussed multiple teams are referred to as P-Ti/Tj, where i is their
current team, and j is their previous team.

88

Figure 5.1: Axial coding process. Left: first round of axial coding, right: looking for
relationships and connections

it from. But I have never really taken any courses or anything else in the security

area.”

Following open coding, we performed axial coding by looking for patterns, rela-

tionships, and connections between the open codes. During this process, we asked

questions, such as, why, where, how, and when. We wrote each of the codes on a

Post-It note, grouped similar ones, and looked for relationships, such as categorical

or causality relationships. Even though this process was possible using Atlas.ti, we

preferred using Post-It notes to allow us to be more immersed in the data, have an

overview of the codes and categories, and have the ability to move them around as

needed, as shown in Figure 5.1.

The last step in coding was selective coding, where we worked towards integrating

and refining the categories, and identifying a core category that represents the overall

theme of the research [159]. To achieve this, we examined the categories, while

referring back to the interview scripts (raw data), abstracting the main issue and

asking ourselves; “what comes through although it might not be said directly?” [159].

89

Through being immersed in the data and as the analysis continued, a core cat-

egory relating to the concept of internalizing and accepting security activities and

behaviours began to emerge. We will discuss this further in Section 5.4.

5.1.1 Researcher Bias

The researcher mainly performing the analysis has background in software engineering

and software development, which may have influenced the analysis. However, the

analysis did not start with any pre-conceived theories or ideas and the researcher

tried to maintain objectivity throughout the analysis.

5.2 Knowledge Acquisition Taxonomy

Software security is not a trivial issue due to the adversarial nature of security, where

software development teams and attackers are in a constant arms race. Additionally,

the balance is tipped in the adversary’s favour; to succeed, attackers may only need a

single vulnerability to compromise a system, whereas for guaranteed security, software

teams should eliminate all vulnerabilities. Failure on the part of developers could

lead to catastrophic consequences [71] (e.g., [41, 160]), and with evolving threats, it

is important to stay updated on software security issues.

Through our analysis of interview data, we identified different opportunities for

acquiring and sharing security knowledge. Some of these opportunities were not ex-

plicitly reported by our participants as learning methods, though our analysis revealed

their potential for knowledge acquisition.

Types of Learning. We found that the learning opportunities identified in our

data can be classified as “formal”,“semi-formal”, and “informal”. Formal learning is

always organized and structured, has learning objectives, and is always intentional

from the learner’s perspective [48, 56, 57, 120]. On the other end of the spectrum,

informal learning is never organized nor structured, does not have specific objectives,

and is never intentional from the learner’s perspective [48, 57, 120]. In other words,

informal learning occurs through experience in everyday life. Semi-formal learning

90

Table 5.1: Knowledge Acquisition Taxonomy. The taxonomy presents knowledge
acquisition opportunities and features associated with each opportunity. See inline
for their description.

Formal Semi-formal Informal

Employer
Attending mandatory training

$$ E � 2 �

Receiving in-context support
$ B � 2 �

Participating in
mediated social contact opportunities

$ B � 2 �Using CR as a learning tool
$ B � 2 �

Employer &
Developer

Attending employer-sponsored talks
$ E � 2 �

Attending conferences
$-$$ E � 2 �

Collaborating in the workplace
$ B � 2 �

Participating in CTFs
$-$$ B � 2 �

Developer

Referring to optional material
$ E � 2 �

Searching online
$ B � 2 �

Seeking help
$ B � 2 �

Taking courses
$-$$ E � 2 �

Reading information and
discussion websites
$ E � 2 �

M
o
re

in
te

rn
a
l

falls between these two. Several sources [48,57,120] refer to it as “non-formal” learn-

ing, while others use this term to refer to “informal” learning (e.g., [56]). We use the

term “semi-formal” to avoid confusion. The definition for “semi-formal” learning has

the least consensus [120], however, adapted from [48,57,120], we describe semi-formal

learning as lacking one or more aspects of formal learning while being more organized

and structured than informal learning.

Activity Initiator. The initiator of the activity is the entity with the motivation

to start the activity, thus the learning opportunity. This can be the employer, e.g.,

mandatory activities that the developer attends for compliance. On the other hand,

developers themselves can initiate activities, i.e., activities that the developer is self-

motivated to initiate without direct encouragement or mandate. Some activities are

initiated by both the employer and the developer, e.g., non-mandatory activities set

up by the employer that developers can choose to participate in, even though they

would not have initiated the activity on their own. Thus, activity initiation is along

a employer - developer spectrum, where initiation is more internal to the developer

as we move towards the developer end of the spectrum.

In Table 5.1, we present a taxonomy of activities described by our participants

91

that we have identified as methods for knowledge acquisition. We represent the type

of learning associated with the activity horizontally across the table, and the initiator

of the activity (thus the initiator of the learning opportunity) vertically. Note that,

unmotivated developers may still perform activities in the taxonomy’s third row; they

may benefit from learning opportunities that are a by-product of their tasks, however,

our analysis shows that they are likely to procrastinate with respect to these activities.

Features. We have identified five different features for each learning opportunity/activity.

• The relative cost ($, $$). The symbol $ indicates that the activity is relatively

low cost and $$ indicates higher cost. Obviously, the cost one company finds

reasonable may be expensive for another. Thus, this characteristic should be

used to compare activities relative to each other, rather than, e.g., finding the

most reasonably priced activity.

• Fit in the developer’s objective (E,B). This feature describes how learning fits

in the developer’s objective. E indicates that learning is the developer’s explicit

objective of the activity, whereas B indicates that learning is a by-product.

• Source expertise (�). This describes whether the source of knowledge has

high security expertise. A � in the taxonomy indicates that the source of

information has high experience in the aspect being taught. In cases where it

is greyed-out, the source of information varies in their level of expertise. Note

that advancement in knowledge can occur even if the teacher does not have

higher expertise than the learner through discussions and sharing of interpreta-

tions [154].

• Fit in the SDLC (2). This indicates whether the activity is part of the devel-

oper’s tasks, thus part of the SDLC. A 2 in the taxonomy indicates that the

activity is performed as part of the developer’s tasks, whereas it is greyed-out

when the activity is not part of the developer’s tasks.

• Knowledge source (�). This feature describes the source of knowledge with

respect to the company. A � in the taxonomy indicates that knowledge is

92

Table 5.2: Distribution of participants mentioning learning opportunities fitting in
each cell of the Knowledge Acquisition Taxonomy

Formal Semi-formal Informal

Employer
Attending mandatory training

P-T1, P-T2, P-T5

Receiving in-context support
P-T1, P-T4, P-T6, P-T7/T8,

P-T10, P-T11, P-T12 Participating in
mediated social contact opportunities

P-T2, P-T6, P-T7/T8, P-T10,
P-T11, P-T12, P-T13

Using CR as a learning tool
P-T1, P-T4, P-T6, P-T10

Employer &
Developer

Attending employer-sponsored talks
P-T2, P-T3

Attending conferences
P-T2, P-T3, P-T5, P-T10, P-T11 Collaborating in the workplace

P-T1, P-T2, P-T3, P-T5,
P-T6, P-T7/T8, P-T10/T11, P-T10, P-T11

Participating in CTFs
—

Developer

Referring to optional material
P-T1, P-T3, P-T10

Searching online
P-T3, P-T9, P-T10/T11, P-T10 Seeking help

P-T1, P-T2, P-T4, P-T7/T8,
P-T9, P-T10, P-T11, P-T12Taking courses

P-T4, P-T6, P-T11

Reading information and
discussion websites

P-T4, P-T7/T8, P-T10, P-T12

M
o
re

in
te

rn
a
l

flowing to the company from external sources. When it is greyed-out, this

implies that knowledge is shared within the company.

This taxonomy was built based on our analysis of interview data. Though other

activities may exist that are not included in the taxonomy, the taxonomy allows for

exploring and reasoning about learning-inducing activities in the context of software

security.

We will now describe each of the activities presented in our taxonomy. Table 5.2

shows how the knowledge acquisition taxonomy categorizes the learning opportunities

described by participants.

5.2.1 Formal Learning

For all formal learning opportunities that we have identified, learning is explicit (E)

from the developer’s perspective. In addition, the source of information, be it an

instructor in a training session or an author of a training manual, has high expertise

in the topic being taught (�). We will now discuss each of the identified formal

learning opportunities.

93

Attending Mandatory Training ($$ E �)

This formal training is usually expected as the first step for a secure SDLC. Most of

our participants mentioned that they attended mandatory training as they started

their job. In most cases, the training focuses on general security topics (e.g., pass-

words, and phishing), and best practices while using company resources or sharing

company code. However, some participants also reported that their training included

aspects of software security (P-T1, P-T2, P-T5). In addition, P-T1 mentioned that

her company requires that developers pass certain exams testing their knowledge of

the training topics.

In addition to mandatory foundational training, P-T5 explained that his company

also mandates that developers attend regularly scheduled training sessions. However,

such mandatory training is often unwelcomed by developers. P-T5 explains, “It’s

so often actually that people start to get annoyed at having to go to it”. Thus, the

frequency of the sessions was reduced as “the morale improved” and the security

company culture improved. P-T5 explains, “We kept doing [regular training], and it’s

been quite effective. So as a result of it being effective, we scaled down the frequency

at which it needs to be done. But it’s not because it’s less important, it’s just because

people started to get it more.”

It appears that adapting the frequency of the training to the outcomes could

lead developers to perceive the usefulness of the training and be more attentive to

it. The rationale could be that the more attentive developers are, the less time

they have to spend on additional training and the faster they can get go back to

their development work. In Section 5.4, we discuss how valuing security can have an

impact on developers’ performance and on promoting software security.

Attending Employer-Sponsored Talks ($ E �) and Referring to optional

material ($ E �)

These two explicit learning activities are initiated by both the company (for hosting

the talk or providing the material), and the developer (for deciding to take this

learning opportunity). The source of information for both activities are considered

experts in the areas they discuss (�).

94

• Attending employer-sponsored talks. Two participants (P-T2, P-T3) mentioned

that their companies sometimes arrange technical talks, e.g., to introduce a

new security API. We classified this activity under formal learning because it

is structured, organized, and addresses a specific topic relevant to the company

with specific learning objectives. These talks are usually given by employees

within the company, thus knowledge sources are internal to the company. How-

ever, P-T3 mentioned that his company sometimes invites external experts to

give talks.

• Referring to optional material. Three participants also mentioned that their com-

panies provide optional security knowledge resources. Experts in the company

prepared these resources in the form of reading material, or video lectures. P-

T3 said, “they do have an infrastructure, so that people can easily find actual

courses taught by colleagues at this very institution. [...] They have a series of

sort of self seminars, so these are like slideshows or online videos that we can

look at.” P-T1 mentioned that their material is accompanied by an assessment

test, that allows the developer to self-test their knowledge. Additionally, these

assessments allow the company to recognize the developer’s level of security

knowledge.

Taking Courses ($-$$ E � �)

To increase or maintain their security knowledge, some participants explained that

they do so by taking courses or even acquiring a graduate degree. Their companies

did not require or even encourage them to do so, thus the initiation of this learning

opportunity is internal to the developer. P-T11 explained, “For me, I like taking

courses [...] I mean if something shows me all the types of vulnerabilities I need to

really be thinking about when I am working on my applications.” The cost of this

activity varies, an online course is less expensive than an on-site course, and both are

less expensive than a graduate degree. Some companies may reimburse the developer

for the tuition fees. Knowledge in this case is flowing to the company from an external

source (the institute offering the course or graduate degree).

95

5.2.2 Semi-Formal Learning

Activities listed under semi-formal learning are not as structured or organized as those

listed under formal learning. The activity may (or may not) have specific learning

goals. The source of knowledge does not necessarily have high security expertise, and

learning from these activities may be the developer’s explicit goal or a by-product of

the activity.

Receiving In-Context Support ($ B � 2) and Using CR as a learning

tool ($ B 2)

For both these activities, developers gain security knowledge in situ while working on

their tasks (2). In this case learning does not compete for time with development

work, as learning from these activities is a by-product (B) of the development task.

• Receiving in-context support. In-context support comes in different forms. For

example, through giving the developer specific steps to follow to reproduce an

issue found in her code, along with an explanation of the issue and how to fix

it. In another case, in-context support was done through pairing the developer

with a more senior colleague to disseminate security knowledge across the de-

velopment team and to support junior developers. P-T11 explained, “[Pairing

junior and senior developers intended] to make sure that the junior [developer]

doesn’t feel, you know, like they are left alone on the issue or they are frustrated

or stuck, and have somebody to kinda guide them through the work that they are

doing step by step.” On the other hand, rather than relying on individuals with

security expertise, P-T10 explained that his company formed a “security coun-

cil” from experts within the office to provide security guidance to developers

and to ensure developers’ questions are answered by the council member with

the most relevant expertise. The council informs developers of relevant issues to

consider during implementation. Developers are expected to consult this coun-

cil, e.g., when they need advice. P-T10 explained, “If there is anything that we

flag up as ‘ok this might have security implications’, then it goes to them to say

‘ok, do you guys find anything? [Do] you have any comments on the design? Is

96

there anything maybe we didn’t think of?’”

• Using CR as a learning tool. Code review, being part of the SDLC, is a suitable

and convenient opportunity for developers to learn about security in context. P-

T1 explained that upon finding a security issue, reviewers take this opportunity

to teach the developer about its implications and how to fix it. This can happen

face-to-face or through code review feedback. She said, “[Reviewers] just come

right away to your cubicle and explain [to] you [...] because they feel [that]

going and taking a book and reading it would be, mmm, so much painful. So,

they just come over to you and draw on the board and explain what you did and

what you should not do.” In some cases, the reviewer is not necessarily more

experienced than the developer, however, the discussion that arrises during the

review session can lead to better insights on code security. P-T1 also mentioned

that junior developers can act as mock reviewers to learn about the process and

types of issues to avoid in their code.

Contrary to what would seem obvious on first sight, this learning method is

categorized as B and not an E. Learning about security is not the developer’s

explicit objective from code reviews; developers either want to learn about the

process of code reviews or they want to learn how to fix issues in their code.

Attending Conferences ($-$$ E � �) and Participating in CTFs ($ B �)

These activities are not mandatory; they are encouraged and sometimes sponsored by

the employer. However, it is up to the developer to participate. Knowledge sources

for these activities is usually external to the company (�).

• Attending conferences. Three of our participants (P-T2, P-T5, P-T11) men-

tioned that they sometimes attend academic conferences to keep up with new

technologies and new security attacks and defences. There is no mandate from

their employers to attend such events, however, it is encouraged. Employers may

even reimburse their developers for conference registration fees and/or other ex-

penses. P-T11 explained, “they do offer umm, they will pay for us to go. Like

97

if you want go to a conference that’s, you know, in town, they’ll pay for the fee

to go to the conference.”

Thus, attending conferences is an activity initiated by developers and encour-

aged by employers, where learning is an explicit goal (E). Conference presenters

are considered experts in the area they are presenting (�). The cost of this

activity varies depending on the conference itself (conferences differ in their

registration fees), and whether the expenses include travel and accommodation

expenses.

• Participating in CTFs. Capture The Flag (CTF) [45] events are competitions

where teams work together to solve challenges. These events offer hands-on

experience to developers in an entertaining manner [122]. Developers participate

in CTFs to socialize or to win prizes and bragging rights [122,161], thus learning

about security is considered a by-product (B). However, CTFs are not part of

the SDLC, hence the greyed-out 2. This is the only activity in our taxonomy

where learning is a by-product while not being part of the developer’s tasks.

CTFs are fairly related to conferences [4] and have been increasing in popu-

larity [161], however, none of our participants mentioned them. This implies

a missed opportunity for learning in a manner that is shown to be amiable

to developers. In addition to external events, employers can organize internal

CTFs where teams would be formed from within the company. In such a way,

employers can focus their events on the most relevant security aspects. Also, by

forming teams from security experts and novices, this can improve collaboration

and bridge the gap between developers and security experts [165].

Searching Online ($ B � 2) and Reading Information and Discussion

Websites ($ E �)

These two activities represent accessing online resources in general. Online resources

vary in their organization and credibility. They range from personal blogs, knowledge

markets (e.g., Stack Overflow [7]), to more official resources (e.g., National Vulnera-

bility Database (NVD) [116] and Common Vulnerabilities and Exposures (CVE) [3]).

98

We present them as two different activities, as we have identified two different motives

to accessing these resources, making them two distinct activities.

• Searching online. Developers often use online searches, e.g., to find out how to

implement a feature or how to fix an issue in their code [11,12]. If a developer is

using online resources to fix a security issue, she may learn about that security

issue while working on her task. Thus, learning from this activity is considered

part of the SDLC (2) and a byproduct of the activity (B). Two participants

(P-T3 and P-T9) briefly discussed this activity. P-T3 explained, “frankly, you

know, Google search engine. I basically search things online. So, when there’s

something particular that I need to look into, I basically look it up online and see

what the internet says.” He also explained that he would prefer using “official

resources or more reputable sources”, rather than a blog or the such.

• Reading information and discussion websites. Contrary to searching online, learn-

ing from internet resources in this activity is explicit (E) and not part of the

SDLC. Some developers explained that they use internet resources to stay up

to date on security vulnerabilities. For example, P-T10 explained his strategy,

“[I follow a] couple of blogs, just general websites as well that might point out

some new vulnerability. If I want to go in depth on something, then, you know,

we can read about it CVEs for that thing.” Our participants’ recounts of their

use of discussion websites indicates that they did not actively participate in

discussions, rather they were passive learners reading about the security topic

and the available discussion.

5.2.3 Informal Learning

Informal learning is sometimes referred to as “learning by experience” [120]. For all

the activities listed here, learning is a by-product (B) of the activities, which are

performed as part of the SDLC (2).

99

Participating in Mediated Social Contact Opportunities ($ B 2)

Mediated social contact opportunities is a term that we use to describe social oppor-

tunities arranged by the employer. For example, some participants mentioned that

they discuss work impediments during team meetings, including security issues they

face and how they could be addressed. Others mentioned that they work in open-plan

offices which often stimulates discussions. P-T10 said, “We all sit relatively close to-

gether, so if someone finds something, they might just sort of say ‘OK, does anyone

know about this?’ ‘Why are we doing it this way?’” P-T10 explained that they value

these general discussions as they allow developers to stay informed about security

vulnerabilities and prevent them in their code.

Collaborating in The Workplace ($ B 2)

In this activity, we focus on collaboration between different members of the project

team; more specifically we focus on the interaction and the back-and-forth discussions

between teams. In our interviews, participants described multiple instances of differ-

ent teams working together, e.g., testers working together with developers to better

understand the purpose of the code, and thus being able to better analyze poten-

tial vulnerabilities. P-T2 explained, “Usually, if [the testers] think there’s a problem,

they really wouldn’t go ahead and publish the bug like this; they would work with us.

They’d be like, ‘do I understand this correctly? Is this the correct behaviour?” [...] So,

it’s a process before the bug actually gets submitted.” Collaborating with other teams

allows for “information sharing” between the different teams, as P-T11 described.

P-T5 explained that one of the factors to rate the success of a code review session

is by determining whether it resulted in information sharing among reviewers and

developers. He explained, “A good review is one where the development team gets a

better understanding of the security of the application, and the security team gets a

better understanding of how applications are constructed and how to interact with the

development teams.”

Workplace collaboration can help bridge the gap [165] and reduce conflicts between

different teams. P-T9 explained that his development team’s frustration with the

testing team is mainly due to poor communication and the disconnect between the

100

two teams. He said, “[The relationship between the testing and development team is]

bad. [chuckles] I mean, usually, you just pass them the code and then, they run through

test cases and, you know, if they fail, they’ll just come back say ‘fail’. And then they

don’t..., because people who [are] doing the testing, they have no, zero knowledge about

the code itself.”

Seeking Help ($ B 2)

Participants also described multiple instances where they turned to their colleagues

for help. This is different from “collaboration in the workplace”, as help seeking here

is informal and random, occurring only when the developer needs help while working

on their tasks, rather than, e.g., during a code review session or a follow-up on testing

results. In addition, the developer seeking help is usually the main beneficiary of the

knowledge shared. P-T4 explained, “if I need advice from someone, I would usually

ask, you know; ‘I’m looking at this thing here, how would you go with doing it?’

We kind of just talk back and forth, it’s usually pretty free form and open.” Our

participants also mentioned that they sometimes seek help to answer more specific

questions relating to specific security issues. For example, P-T1 explained that if she

cannot fix a security issue in her code, she asks a teammate who faced a similar issue

how they fixed it. Although this activity is initiated by the developer, it is sometimes

performed by unmotivated developers albeit after procrastinating. For example, P-

T2 mentioned, “In my experience they would delay [asking for help]. They’d work on

things for months and then over coffee they’d be telling me what they’re looking at

and I’d break it in 2 minutes [...]. And they would be like [chuckle] ‘okay, let’s do this

again’.”

5.2.4 Insights Based on the Taxonomy

As shown in Table 5.2, formal learning opportunities are the least commonly reported

by our participants. It is unclear if our participants’ companies are deliberately

moving away from formal learning in favour of other types of learning. However, it is

clear from Table 5.2 that security learning opportunities that result as a by-product

from the developer’s tasks and responsibilities are more common than others. We

101

will refer to those learning opportunities as task-induced learning opportunities.

The success of all the task-induced learning opportunities (except ‘searching on-

line’) requires interaction and collaboration within the project team. To explore the

dialogues, interaction, and collaboration within a project team, we look at the project

team through the lens of the third generation activity theory (cf. Section 2.7.1). Re-

call, a project team can consist of multiple teams (e.g., development team, reviewers,

and testing team), each of which constitutes an activity system. Thus, a project

team can be seen as a network of multiple interacting activity systems [54]. Each

team looks at the software from a different perspective and has background, points of

views, and objectives different from the other teams (multi-voicedness [54]). For ex-

ample, a development team would focus mainly on functionality, whereas the testing

teams might focus on security.

Taking the interacting activity systems as our unit of analysis, we found that some

project teams attempt to benefit from their multi-voicedness through communication,

negotiations and avoiding conflict. This allows the activity system to grow [54]; the

two teams bring together and harmonize their perspectives and objectives, function-

ing software for the development team and secure software for the security testing

team. Breakdowns in this relationship can be detrimental. For example, P-T9 de-

scribed the relationship between the developers and the testing team as “bad” due

to the lack of collaboration and the lack of testers’ understanding of the software

functionality. On the other hand, P-T5 explained that their security testers “have

full access to the development team, so they can coordinate as much as they want”.

This allows testers to have a good understanding of the features they are testing

and minimizes conflicts between testers and developers. P-T2 gave another example

for collaboration between developers and testers, he said, “while testing they come

back to [the developer] with questions and clarifications and then they go complete

testing.” He also gave an example of how the lack of collaboration almost caused a

serious security issue to go unnoticed. He explained, “a guy in [location] [...] was

testing some memory issue in the kernel. While he was doing the test, he wanted to

access kernel memory from the user process. So, his test actually succeeds to get to

the kernel memory. He’s [thinking] ‘if I can get to the kernel memory, everything is

102

fine, continue on.’ So I look at the test and I’m like ‘dude, [...] the test actually did

discover a flaw, but you didn’t tell me about it. This is a false negative.’ [...] So, this

is because of the lack of understanding.”

The informal learning opportunities, identified from our interviews, are examples

of how project teams benefiting from their multi-voicedness. Some participants in-

dicated that these opportunities allow the developers to learn more about security

while the testing team learns more about the functionality of the software. This in

turn helped reduce conflicts between the different teams. Participants’ description of

such activities emphasized their sense of belonging to the team and portrayed their

project teams as intertwined teams working together as one; a coherent network of

activity systems, rather than disconnected systems.

This is particularly important for software security since the threats are constantly

evolving and it is important to stay updated on new security issues [77, 135, 153].

Given that security is not the developer’s primary objective, as evidenced by our

data and previous work [13, 71, 178], it is unrealistic to expect that developers will

be able to remain current on such issues on top of their regular tasks. In addition,

security information is often presented in a manner that is unusable to developers [110,

111]. Thus, collaborating with those having high security expertise gives developers

a chance to stay updated on security issues, and it could also lead to improving

performance and motivation towards software security, as will be discussed later in

this chapter.

Although we have some evidence that employers may be supporting some task-

induced learning opportunities, our data does not contain enough in-depth evidence

for all activities. Our participants did not necessarily describe these activities as

security-learning methods, rather they were generally described as part of the devel-

oper’s typical everyday work activities. It is also unclear whether employers recognize

the potential for these activities in spreading security knowledge, and whether such

task-induced learning opportunities receive appropriate support. Many developers

prefer to learn while working [184], however, these may be missed security knowl-

edge opportunities. Our analysis shows that participants remembered security issues

they encountered in live systems more than others they may have learned about from

103

other sources. Thus, we believe that focusing on and promoting task-induced learn-

ing opportunities can be more beneficial for security than the on-size-fits-all manda-

tory training recommended by many security initiatives. Developers have different

learning styles, like all humans [48], thus opportunities such as ‘in-context support’

provide a more personalized learning experience. Additionally, since developers are

better at recognizing security vulnerabilities when primed [119], such in-situ learn-

ing opportunities—occurring at critical times when developers need help—are likely

to be more effective, especially for security [165]. Employers should also encourage

and support other activities that require collaboration within and between teams.

This allows for spreading knowledge, reduces conflicts, and helps produce a software

product where different points of view and priorities have been considered. For ex-

ample, employers should find ways to help developers find the most knowledgable

person to answer their security questions. As mentioned earlier, when trying to fix

a vulnerability, developers may seek help from a colleague who had a similar issue.

It may be the case that the developer does not know who that person is or she may

postpone seeking help and procrastinate. In addition, the knowledgeable person may

be overloaded with such questions on top of their regular tasks. Thus, employers may

consider designing a security council, such as the one described by P-T10, or develop-

ing an accessible (developer-friendly) system that contains a database of previously

detected vulnerabilities, how they were fixed (including code snippets), and who fixed

them as potential contact persons. The system could also balance the number of help

requests across different contact persons, to avoid overloading some of them. In ad-

dition, the time these contact persons spend collaborating with others should count

towards their working hours and should not be an extra workload on top of their

existing tasks.

5.2.5 Additional Use for the Knowledge Acquisition Taxonomy

Although we set out to explore how developers gain security knowledge, this taxonomy

could be used to help induce security-learning opportunities, which not only affects

the ability to address security, but as detailed in the following sections, it could also

affect the motivation and willingness to do so.

104

This taxonomy can help employers and teams recognize existing activities adopted

by their developers that may lead to advancing their security knowledge. In addition,

it could help employers explore learning opportunities and decide on the best methods

to promote security knowledge within their organization. Employers could also map

their activities onto the taxonomy to determine whether they are a good fit for them

and their developers, taking into consideration the different features for each activity

and developers’ initiative.

Based on our analysis, we have identified three main aspects to consider when

deciding on a security knowledge promoting activity:

• The learner’s initiative,

• The teacher’s experience, and

• The available budget.

Initiative: If the developer (being the learner) is motivated to learn about secu-

rity, then all the activities listed in the taxonomy are suitable. However, in case of

an amotivated developer, it is unlikely that they would initiate an explicit learning

activity. Thus, the employer could instead initiate (or at least partly initiate) the

learning opportunity. Ergo, activities listed in the first, and perhaps the second row,

of the taxonomy (Table 5.1) may be suitable. In addition, learning opportunities

that are a by-product of the developer’s main tasks (B 2), even from the third row,

may be better received by such developers, especially those who do not have time to

spare or those opposed to mandatory explicit learning, such as mandatory training.

In Section 5.3, we focus more on motivations towards software security.

Experience: The teacher’s experience is another important aspect to consider. If

security expertise is unavailable in the company, the employer should avoid activities

that require high internal security expertise. They could consider activities without

that requirement (i.e., those marked with a greyed-out �), or activities with security

expertise external to the company (i.e., those marked with � and �). When relying

on external expertise, it is important to check the source’s credibility and to encourage

developers to use more credible sources; developers often rely on external resources

that are not necessarily ideal for security [11,61].

105

Figure 5.2: Analyzing motivations and amotivations for software security. Left: look-
ing for patterns, right: identified patterns in amotivation.

Budget: The available budget that the employer is willing to allocate for promot-

ing security is another aspect to consider. Fortunately, most learning opportunities

derived from our interviews are relatively low cost. However, as mentioned earlier, the

affordability of an activity varies between companies, thus employers would need to

decide on the most useful activity that fits their budget. In addition, some employers

may wish to invest in more expensive learning opportunities, such as offering security

courses to their developers, or by hiring external security experts to provide in-context

support to developers. Although the latter did not come up in our interviews, it has

been reported elsewhere [98].

5.3 Motivation for Software Security

We now focus on motivations for performing security related tasks.

A recognized problem for security is the unmotivated user property [174]. This

106

concept also applies to software developers—security is rarely their primary objec-

tive [13, 71]. We analyzed the interviews to explore what motivates developers to

adopt or not, security practices and perform security-related tasks. We assigned

codes to interview data excerpts relating to developers’ motivations, or lack thereof,

for software security. We then used Post-It notes for further analysis as described in

Section 5.1 (see Figure 5.2). Table B.1 in Appendix B, presents codes corresponding

to the software security (a)motivations found in our data, explains each code, and

presents a corresponding sample quotation. The table groups the codes following the

types of motivations as will be discussed below and as shown in Figure 5.3.

Through our analysis, we found several factors that may induce developers’ amo-

tivation towards security, despite their knowledge and belief of its importance. In

addition, we identified different motivations to software security. At first, we classi-

fied the motivations as intrinsic and extrinsic. However, this classification was too

simplistic; the extrinsic motivations identified in our study varied in their driving

forces, e.g., an external mandate or the developer’s sense of responsibility.

Thus, we found that SDT [47] was a good fit to represent the different motivations

and deterrents (amotivations) identified in our study. As explained in Section 2.7.2,

SDT [47] presents (a)motivations on a self-determination continuum. SDT [47] rec-

ognizes four types of extrinsic motivations that vary in the extent to which their

regulation is autonomous [47].

• External regulation is the least autonomous and most external to oneself.

• Introjected regulation refers to motivations resulting from self-pressure and ego.

• Identified regulation is when the goal of the activity was evaluated by the actor

and deemed as personally important.

• Integrated regulation is when the actor fully accepts the goal of the activity and

acts towards it with volition.

• Intrinsic motivation is the most autonomous, where activities are performed

purely for the pleasure and satisfaction that result from the challenge they

present to oneself.

We present (a)motivations identified in our study on the self-determination con-

tinuum, as shown in Figure 5.3. The figure colours represent their favourability for

107

Figure 5.3: The self-determination continuum of software security

software security. At the far left of the continuum, we present amotivations that led

participants (or their teams) to not act towards software security. These are coloured

in bright red to indicate they are problematic. To their right, we present software

security motivations. As we move towards the right, activity regulation increases

in autonomy. Motivations under “external regulation” and “introjected regulation”

are coloured pale red, because these motivations are not truly internalized and are

contingent on their perceived outcomes (e.g., they are performed to comply with

regulations or to maintain self-esteem). Motivations under “identified regulation”,

“integrated regulation”, and “intrinsic motivation” are all internally driven (albeit to

a varying degree), thus they are coloured in green in Figure 5.3 as they present the

most favourable types of software security motivations.

5.3.1 Amotivation

We explored amotivations for software security: why security is deferred or dismissed.

108

Amotivation - Perceived Lack of Competence

Our analysis revealed that the lack of resources and the lack of support are two factors

that led to a perceived lack of competence to address software security. Some partic-

ipants indicated that they do not have the necessary budget, time, people-power, or

expertise, to properly address security in their SDLC. We also found that this lack

of trust in their ability to address security occurs when teams do not have a security

plan in place, when security tools are nonexistent or lacking, and when developers are

unaware of the availability of such tools. For example, P-T4 said, “I wish I knew of

tools, but unfortunately I don’t really know of any tool. So, I would probably be happy

to say I would like to use some tools, but I don’t know of any. I kinda wish I did, but

I don’t.”

Amotivation - Lack of Interest, Relevance, or Value

The other type of amotivation comes from the lack of interest, relevance, or value

of performing security tasks. The lack of relevance happens when security is not

considered one of the developer’s everyday duties (not my responsibility), or when

security is viewed as another entity’s responsibility (security is handled elsewhere), such

as another team or team-member. Our analysis shows that when this is the general

attitude in a team, it could have detrimental effects such as induced passiveness.

It could lead developers (even those who believe in the importance of addressing

security) to become amotivated towards security and rather focus on their ‘more

valuable’ existing duties. For example, P-T10/T11 said, “I don’t really trust them

[my team members] to run any kind of like source code scanners or anything like that.

I know I’m certainly not going to.”

Additionally, our analysis shows different reasons why security efforts lack value

for some teams in our dataset. First, we found that some of our teams suffer from the

optimistic bias [139], thinking that attackers would not be interested in their appli-

cations, or that they are not a big enough company to be a target for attacks. Thus,

as they see no perceived risk, security efforts lack value. P-T7/T8 said, “For a small

company, nobody will usually attack or compromise the vulnerabilities in your system.

If something really bad happens, usually, you don’t really get enough [bad] reputation

109

as well.” We also found that when there are no perceived negative consequences to

the individuals or to the business from the lack of security (no perceived loss), then

security efforts lack value. For example, when developers are not held responsible for

security issues found in their code, they would rather spend their time on aspects for

which they will be held responsible. P-T7/T8 explained, “[If] I made a bad secu-

rity decision, nobody would blame me as much as if I made a decision that lead to a

[non-security] bug in the system. So the priority of security is definitely lower than

introducing bugs in the system.” Moreover, as different tasks compete for resources

(the developer’s time in the previous quote), when security has no perceived value,

those deemed more valuable are prioritized.

Amotivation - Defiance/Resistance to Influence

The final amotivation we identified is inflexibility. In our dataset, we found that some

developers would work around security, not because it is difficult to comply, but

rather because it conflicts with their perception of the proper way of coding, or it

conflict with how they are used to writing code. P-T10/T11 explained how one of

his team-members is resisting to use a framework in the proper way, despite having

“gotten into so many arguments”(P-T10/T11) with his manager, “I can tell he is

very self-absorbed with his own thoughts, and he thinks that what he says is somehow

the truth, even if it doesn’t necessarily pan out that way”.

5.3.2 Intrinsic and Extrinsic Motivations

Internally-Driven Motivations

We start by the most favourable form of motivation [141], where the driving force is

either intrinsic or internal to a certain degree.

We classify self-improvement as (the only) intrinsic motivation to security because

it is driven by the developer’s own interest to challenge herself and improve her capa-

bility of producing issue-free code. For extrinsic motivation, professional responsibility

and concern for users are two motivations, where the action is not performed for its

inherent enjoyment, rather to fulfill what the developer views as their responsibility

to their profession and to safeguard users’ privacy and security. For example, P-T3

110

said, “I would not feel comfortable with basically having something used by end users

that I didn’t feel was secure, or I didn’t feel respective of privacy, umm so I would try

very hard to not compromise on that.” In addition, we identified motivations, where

participants view the goal of addressing security as personally important (i.e., identi-

fied regulation). For example, our analysis shows that understanding the implications

of ignoring or dismissing security increased security awareness and motivated devel-

opers and their teams to integrate security in their SDLCs. P-T4 explained, “I know

for me personally when I realized just how catastrophic something could be, just by

making a simple mistake, or not even a simple mistake, just overlooking something

simple. uhh it changes your focus.” This was especially true when the understanding

comes through practical examples of how the developer’s code could lead to a security

issue or through experiencing a real security issue at work. Caring about the company

reputation and recognizing how it could be negatively affected in case of a security

breach is another example of identified regulation motivation. Moreover, when the

whole project team is responsible for security, as opposed to singling out a specific

entity, our participants recognized that as part of the team they should participate

in this shared responsibility. This could in turn have a snowball effect and lead to

motivating more team-members to recognize the importance of considering security

since their colleagues do (induced initiative). For example, P-T7/T8 said, “When you

see your colleagues actually spending time on something, you might think that ‘well,

it’s something that’s worth spending time on’, but if you worked in a company that

nobody just touches security then you might not be motivated that much.”

Externally-Driven Motivations

Introjected regulation motivation is when the actions are driven by ego and internal

rewards and punishments. Our analysis shows that addressing security can be driven

by the desire to be recognized as the security expert or receive acknowledgement

(prestige), which also helps in maintaining self-esteem and self-worth. P-T1 explained,

“Whenever somebody wants to find about you, then they go and check you in the

employee website. Then, when they click your name and check, it shows a badge that

you’re security certified, which gives you a good feeling.” We found three external

111

motivations that are driven by the desire to avoid negative consequences of the lack

of security: an overseeing entity finding non-compliance with regulations (audit fear),

losing marketshare or market value due to a security breach (business loss), and being

monitored and pressured by superiors (pressure). For example, P-T2 explained, “We

have a safety audit, [organizations’ names] all these guys they actually send auditors

to us every, I don’t know, how ever many months [..], and they look at process. They,

you know, scan every single check-in, every single review, [...] and they say ‘oh, no!

You haven’t done that, you lose your certification.’ We lose our certification, we have

no company, we have no customers.” In addition, we found that receiving rewards in

the form of career advancement (e.g., “promotions or move throughout the scales and

employment bands”(P-T5)) is another external motivation for security.

5.4 Internalizing Software Security

As the data analysis progressed, we recognized that our themes could be connected by

a central theme about internalizing security—participants’ perception of the driving

force behind their tasks (e.g., their own will or external factors). This is the last stage

of coding in Grounded Theory, selective coding. In our data analysis, we saw varied

motivation towards security and varying degrees of internalization. For example,

some participants spoke of the importance of security tasks and how they personally

value these tasks, while others were indifferent and indicated that security tasks are

only performed to satisfy an external driving force.

We developed a human-oriented model that describes the process of internalizing

software security based on our analysis (see Figure 5.4). Within the model, the end

goal is the internalization of software security. As shown in Figure 5.4, the two levers

that influence this internalization are “competence” and “relatedness”. The model

shows activities that improve competence and relatedness to facilitate internalization.

To build this model, we incorporated successful strategies that are currently employed

by development teams as described by our participants, while avoiding and addressing

conditions that led to a lack of security motivation in some teams.

112

Figure 5.4: Internalizing software security model

Improving perceived competence. Acquiring software security knowledge and

expertise improves developers’ abilities to address security in their code, as well as

their perception thereof. Security knowledge can be acquired through the different

security learning opportunities discussed in Section 5.2. In the model (Figure 5.4), we

grouped learning opportunities into: explicit learning, implicit learning, and learning

through collaboration.

In general, learning opportunities in our model do not focus exclusively on learning

about technical details (e.g., types of vulnerabilities and how to fix them), but also

highlight the potential adverse consequences of the lack of security. This allows

the developer to understand the implications of her code on her team and company

reputation, and users’ privacy and security (concern for users). Consequently, the

developer learns to value security in development and identifies with its goals.

113

Improving relatedness. Specifically for software security, support for relatedness

was achieved by portraying security as a shared responsibility ; the whole team works

together towards producing a secure application. Thus to be an effective part of this

team, each team-member needs to do their part. P-T12 said, “I think it’s just a

general cultural thing too, you know, everyone knows that people are watching out for

you, it’s seen as a good thing to kind of, be aware of [security].”

Improving both perceived competence and relatedness. As shown in Fig-

ure 5.4, some strategies improve both competence and relatedness. As team-members

and different teams collaborate, this increases their coherence and understanding of

each others’ work (relatedness), and it also allows for transfer of knowledge between

different teams and team-members (competence). These opportunities often include

supporting security tasks in-context (e.g., receiving in-context support and using CR2 as

a learning tool), one of the recommended methods of learning about security [119,165].

In addition, they help avoid hindering internalization which may occur when activities

are beyond the developer’s capabilities or understanding [142]. For example, P-T13

explained their rationale for pairing senior and junior developers, “It’s for more of

the mentoring, to make sure that the junior doesn’t feel, you know, like they are left

alone on the issue or they are frustrated or stuck, and have somebody to kinda guide

them through the work that they are doing step by step.” Although learning through

collaboration is implicit learning, we chose to show them separately in the model, as

they fall in the intersection between competence and relatedness.

An ongoing process of internalization. As developers’ perceived competence

and relatedness increase, they gain and deepen their sense of belonging to their team,

company, and society, as well as, their sense of responsibility. Thus, developers go

into a continuous process of internalizing the extrinsically-motivated security activi-

ties, a process of active learning and self-growth [142]. Internalization also promotes

growth and coherence within the team and across different teams [142]. As shown in

Figure 5.4, this could be seen as an ongoing process; as the developer feels competent

and as part of a team that cares about security, she values security and identifies with

2code review

114

its goal. This leads to internalizing security, which in turn improves her performance

and interest in security, and so on.

Influential factors. Logically speaking, the duration it takes to (fully) internalize

software security would be influenced by the developer’s existing security knowledge

and awareness. Although we do not have longitudinal data to support this, we expect

that, under the same conditions, developers who have prior background in security or

have some awareness of its implications would internalize and accept security more

readily than those who do not. Of course there are other intervening conditions

that influence this process. Some of these condition were discussed in Section 4.4.2.

We reiterate them here along with other conditions, in the context of motivation to

software security.

As our analysis revealed, the attitude towards software security by the developer’s

superiors and those up in the company hierarchy has a substantial effect on the

developer’s motivation to learn about and address security. For example, we found

that participants who discussed security with their superiors valued it more than

others. For example, P-T14 reported “As I was working with [my CTO], um, he

was telling me, you know, all these different kinds of possible attack vectors that may

happen, such as, what happens if the attacker gets access to the actual heap of the

program, the memory [...] So stuff like that, I’ve never had to experience before [...]

So, it was really, really interesting.” Additionally, we found that teams where security

was integrated in their culture usually had a security plan to follow. This could be

both a cause and effect of motivation towards security; they developed a security

plan to motivate security, and their motivation to security improves their security

plan (recall it is an ongoing process).

The availability of resources also affects motivation both on the micro level (in-

dividual developers) and on the macro level (the whole team). For example, with

limited time to work on their tasks, we found that our participants preferred to pri-

oritize their primary tasks; those who were motivated to address security would ask

for a deadline extension. If there was leeway, the deadline extension was granted.

Otherwise, either security would be deferred or the team would have to assign (or

hire) extra personnel. With a limited budget, that may not always be possible.

115

5.5 Summary

In this chapter, we explored different security knowledge acquisition opportunities.

Our data shows that implicit learning, especially when it is part of the SDLC, can be

more effective that other types of learning, and can have a positive impact on software

security. For example, our findings show that developers engage in learning about

security when it is in-situ with their existing tasks. This finding supports previous

research recommending teaching developers about security in-context [165]. In addi-

tion, we discussed the importance of encouraging collaboration within and between

teams. When different teams collaborate, this promotes knowledge sharing between

the different team members, which can improve developers’ security knowledge, re-

duce conflicts, and harmonize the team.

In addition, we discussed developers’ motivations towards software security. Find-

ing the best way to motivate developers is not a trivial task. Even though exter-

nal rewards and punishment may help induce external motivation, previous research

in other domains [32, 64, 141, 146] suggests that these can have a detrimental con-

sequences, such as negatively influencing conceptual learning and problem solving.

Thus, relying solely on external motivations may be a contributing factor to the poor

performance and inadequate security practices that we uncovered. From participants

in our dataset who had external motivations for security (e.g., audits), those who also

had internal motivations had better security processes than those who did not.

Thus, guided by our analysis, we built a model to explain how software security

can be transformed to be internally motivated, rather than an external chore. Such

transformation occurs by recognizing the value of software security and believing

in one’s ability to have an impact on the security of the software being built. To

improve chances of success, mandating security tasks should be accompanied by im-

proving the morale when it comes to security. Based on our data, this can be through

adopting a security culture, supporting developers in these tasks, providing positive

encouragement, and allowing teams to see value and identify with such tasks.

Chapter 6

Survey

In this chapter, we present a survey study that tests and expands our findings from

Chapters 4 and 5. Specifically, we test whether the security knowledge acquisition

opportunities and the motivations identified in our interviews holds with a larger

sample. We conducted an online survey to reach participants with a broad range of

experiences. In this survey, we focus on how developers and their teams direct their

efforts towards software security, as well as the strategies developers employ to deal

with security. We also explore developers’ work motivation styles, their motivation

towards software security, as well as factors that may deter developers from addressing

security.

In particular, this chapter addresses the following three research questions.

RQ1 How does security fit in the development lifecycle in real life?

RQ2 What are the current motivators and deterrents to developers paying attention

to security?

RQ3 Does the development methodology, company size, or adopting Test-Driven

Development (TDD) influence software security?

6.1 Survey Methodology

We conducted an REB-approved anonymous online survey hosted by Qualtrics. The

recruitment notice explained that the purpose of the survey is to explore developers’

motivation and experience at work, as well as their experience with software security

and how it fits in the development lifecycle.

116

117

6.1.1 Survey Design

The survey included 10 multiple/single choice questions, 91 Likert-scale type ques-

tions, 9 short answer questions, and one open-ended question. The survey also in-

cluded logic for contingency questions to avoid presenting participants with questions

that do not apply to them. Questions that discuss the same topic were grouped to

minimize the cognitive load on participants and allow them to consider the topic

more deeply [93]. In addition to demographic questions, we asked participants ques-

tions to investigate how much effort they spend on security in their development

lifecycle, strategies they use to handle security, as well as their experiences with

security vulnerabilities. The survey included 5-point Likert-scale type questions to

explore developers’ motivations specifically towards software security, as well as soft-

ware security deterrents. To help determine participants’ general motivation at work,

we included the established 18-item Work Extrinsic and Intrinsic Motivation Scale

(WEIMS) using a 5-point Likert scale [167]. Through the WEIMS, we generated the

Work Self-Determination Index (W-SDI) which ranges from −24 to +24 for a 5-point

Likert scale. A positive W-SDI indicates a self-determined motivation profile, whereas

a negative score indicates non-self determination [167]. The full survey is included in

Appendix C.

We wanted to capture participants’ original understanding of software security,

thus in the open-ended question, we asked participants to describe what it means to

them “to include security into the development process”. However, to ensure that

participants have a baseline understanding of software security and to avoid confu-

sion, we then provided a brief explanation of software security and how it differs from

security functions. This is particularly important for closed-ended questions, where

we cannot determine participants’ interpretation of software security. For example,

if a participant mistakes software security for security functions (e.g., using an au-

thentication scheme), this could negatively affect the integrity of our data. As shown

in Figure 6.1, the survey also includes a question to verify that the participant has

actually read the definition. Participants were prevented from continuing the survey

until they gave the correct response.

118

Figure 6.1: Explanation differentiating between software security and security func-
tions in the survey.

6.1.2 Testing the Survey Tool

After developing the survey, we went through a pre-testing process to ensure that the

survey is clear and well-understood, to test whether questions are measuring what

119

we intended, and to eliminate any ambiguities. Following the three-stage process

recommended by Dillman [51], the survey was reviewed by colleagues and experts

in the field to uncover any errors, potential misunderstandings, or any unexpected

outcomes. Next, we showed the survey to developers to discuss its clarity and moti-

vation. Finally, we performed pilot-testing with 11 developers to identify any flaws

in the survey and to determine whether the survey is of appropriate length. We used

the feedback from each stage to update the survey before moving to the next stage.

6.1.3 Participant Recruitment

Participants were recruited through two methods.

We recruited participants through Qualtrics paid service. Participants were com-

pensated by Qualtrics in various ways, such as, SkyMiles, gift card, or points to the

equivalent of $6.40 USD. We paid Qualtrics $32 USD per participant for recruitment

and data collection.

We also recruited participants through announcing the survey to our professional

contacts and contacts in some of the major development companies. Participants

received a $10 Amazon gift card as compensation.

6.1.4 Data Quality

To ensure the quality of our data, we took multiple precautions. We provided partici-

pants with a description of software security to avoid differences in interpretation and

to make sure all our participants were on the same page. Participants were prevented

from progressing with the survey until they showed understanding of our description

software security (cf. Section 6.1.1).

In addition, Qualtrics automatically discarded responses from participants who

took less than 7 minutes to complete the survey, as well as those who provided invalid

responses, such as entering gibberish in open-ended questions or providing conflicting

responses (n = 17).

120

Table 6.1: Summary of participant demographics

Country and Gender

Canada 63 (51.2%)
USA 60 (48.8%)

Male 93 (75.6%)
Female 28 (22.8%)
Other or not specified 2 (1.6%)

Professional Experience

Time spent in company
µ = 8 years

Md = 5 years

Time spent in team
µ = 4.6 years

Md = 2.5 years

Time spent in dev. in general
µ = 16.4 years
Md = 15 years

Learned
to
develop
from

Self-taught 22 (17.9%)
High-school courses 1 (0.8%)
College courses 22 (17.9%)
University courses 60 (48.8%)
Online courses 1 (0.8%)
Industry or on-the-job training 14 (11.4%)
Other 3 (2.4%)

Organization Information

Age
µ = 41.3 years
Md = 20 years

Size

1-9 5 (4.1%)
10-249 29 (23.6%)
250-499 15 (12.2%)
500-999 14 (11.4%)
1,000 or more 60 (48.8%)

Team Information

Team size
µ = 13.3 members
Md = 8 members

TDD
Yes 32 (26%)
No 82 (66.7%)
Don’t know 9 (7.3%)

Dev
Method∗

Waterfall development 27 (22%)
Iterative (but not truly agile) 26 (21.1%)
Rational Unified Process 1 (0.8%)
Agile development 58 (47.2%)
Other 10(8.1%)

∗One participant did not indicate a development methodology.

121

Table 6.2: Summary of statistical tests

Design Continuous (normality not assumed) or Ordinal data

Between-subjects
two groups Mann-Whitney test
more than 2 groups Kruskal-Wallis test

Within-subjects
two groups Wilcoxon test
more than 2 groups Friedman test

Significant values were adjusted by Bonferroni-correction for multiple tests as needed.

6.1.5 Participant Demographics

Through the different recruitment channels, we recruited a total of 140 participants,

and we discarded 17 for quality issues. The data reported herein is from the remaining

123 valid responses. Participants are currently working in development in Canada

(n = 63, 51%) or the US (n = 60, 49%). Our data includes participants working on a

wide range of applications types (see Appendix D.) The survey took an average of 24

minutes to complete (Md = 17 minutes). A summary of participants demographic is

available in Table 6.1.

6.2 Survey Analysis

All the results presented in this chapter represent participants’ self-reported be-

haviours and attitudes. We analyzed our data using SPSS Statistics v.25. All sta-

tistical tests assumed p < .05 as a significant level, unless Bonferroni-correction was

applied. Table 6.2 summarizes the tests conducted.

Other than eligibility-qualifying questions, none of the survey questions were

mandatory. Thus, missing values may exist; these are ignored from the analysis when

applicable. In such cases, we indicate the actual number of data points (participants)

when reporting the results.

6.2.1 Addressing the Research Questions

RQ1: How does security fit in the development lifecycle in real life? To

address this research question, we looked at how much of development teams’ efforts

relates specifically to software security and how it is distributed across the different

122

SDLC stages. In addition, we investigated attitudes and behaviours towards secu-

rity, as well as experiences with security vulnerabilities and how these experiences

influenced awareness and concern for security, if applicable. We also explored partic-

ipants’ strategies to handle software security, and further analyzed these strategies

using factor analysis (more details on factor analysis in Section 6.2.2 below).

We performed within-subjects statistical analysis to determine whether security

efforts vary across SDLC stages and to explore whether participants’ rely on certain

strategies more than others. Within subject analysis of strategies was done using the

factors extracted from factor analysis.

RQ2: What are the current motivators and deterrents to developers pay-

ing attention to security? The second research question focused on motives to

engage in or ignore security. Through Likert-scale questions, we explored different

motivators and deterrents to software security. Factor analysis (described in Sec-

tion 6.2.2) was used to identify patterns in motivations and deterrents.

Within-subjects statistical analysis was used to determine whether the different

types of motivators identified through factor analysis are equally effective in motivat-

ing security. The same was done for security deterrents.

RQ3: Does the development methodology, company size, or adopting

TDD influence software security? The third research question explores whether

specific characteristics influence software security. We focused on three characteris-

tics: the development methodology employed by the participant’s team, the company

size in terms of the number of employees, and whether the development team employs

TDD. To answer this question, we used between-subjects tests to explore whether each

of these characteristics influenced efforts towards security, behaviours and attitudes,

strategies to handle software security, security motivators, and deterrents to software

security.

6.2.2 Factor Analysis

We used factor analysis to analyze participants’ security strategies, motivators, and

deterrents. Through principal axis factor analysis, we were able to identify patterns

123

and group closely related information, thus, reducing the set of variables into a smaller

set (factors), while retaining the majority of the original information [60]. Within

and between subjects statistical tests (described above) on strategies, motivations,

and deterrents all used the resultant factors.

As recommended, we retained variables with factor loadings with absolute value

greater than 0.4 [60,156]. For all our factor analyses, the Kaiser Meyer-Olkin (KMO)

measure [83,84] verified the sampling adequacy. Factor analysis results for strategies,

motivators, and deterrents are presented in their respective sections.

6.2.3 Developers’ Work Motivation

As explained in Section 6.1.1, we used the WEIMS [167] to explore our participants’

motivation at work. We found that the vast majority (88.6%) of our participants ex-

hibited self-determined motivation profiles (W-SDI > 0). This is a promising result,

as it shows that our participants do not lack motivation when it comes to perform-

ing their jobs. In Section 6.4.1, we explore participants’ motivators specifically for

software security.

6.2.4 Developers’ Mental Models of Software Security

We analyzed participants’ descriptions of software security and found that the ma-

jority of participants (65%) had a reasonable understanding. The majority of par-

ticipants discussed that software security aims to minimize vulnerabilities, minimize

the negative consequences of malicious attacks, and prevent unauthorized access or

use of their software or the data it handles. Participants also explained that security

should be included from the earliest stages and throughout the development process.

For example, one participant described software security as, “To think about secu-

rity from the earliest planning phases as possible (at least starting during requirement

gathering) and continue to focus on security implications throughout the remainder

of the development process.” In addition, some participants indicated that security

defences should be proactive and that developers should adopt an attacker-mindset.

For example, a participant said, “Whenever you start developing a thing, rather than

124

asking how will we achieve ‘this’, you ask how will someone exploit ‘this’. Every-

thing will eventually be exploited in some way, and when your processes are done in

a proper, security conscious way, as much of the potential harm as possible should

be mitigated.” Participants also discussed various methods to ensure software secu-

rity, such as, internal and external audits, security testing, automated checks, code

analysis and reviews, thinking about security when writing code, and incorporating

security in design. Some participants also discussed the importance of following best

practices, using tools and programming languages that have been approved by their

company, and receiving support from security experts in the company. Even though

the majority of participants’ description implied that they value software security,

one participant interestingly described software security as “Processes that slow me

down. A necessary evil to protect our clients and company’s data.”

Among the alternative interpretations of software security provided by some par-

ticipants were maintaining job security, the ability to be creative in their tasks, pro-

tecting the codebase, and properly implementing security functions (e.g., encrypting

confidential information and passwords).

We will now discuss our results arranged by research question. In discussing

responses to Likert-scale type questions, we group “strongly agree” and “agree” re-

sponses within the text, and likewise group “strongly disagree” and “disagree” re-

sponses.

6.3 Security in the SDLC

The survey had seven questions focusing on how software security fits in the develop-

ment lifecycle (RQ1); exploring development teams’ attitudes, efforts, and strategies

towards software security. These questions are marked (RQ1) in Appendix C.

6.3.1 Efforts Towards Security

Participants reported the percentage of effort directed towards security out of the

overall development lifecycle effort. They also reported the percentage of effort out of

all security efforts as a percentage for each stage. The total for all stages must equal

100%.

125

overall security effort

0

20

40

60

80

100
%

of
eff

or
t

(a) overall

D
es

ig
n

Im
pl

em
en

ta
tio

n

D
ev

Tes
tin

g

C
od

e
A
na

ly
sis

C
od

e
R
ev

ie
w

Pos
t-
de

v
Tes

tin
g

0

20

40

60

80

100
**

**
**

**

**
*

(b) per stage

Figure 6.2: Software security efforts in the SDLC. (The figure shows stages that
significantly differ in efforts towards security. ∗ : p < .05, ∗∗ : p < .01)

As shown in Figure 6.2a, participants indicated that on average 18.7% (Md =

10%) of their teams’ overall effort in the development lifecycle relates specifically to

security tasks. Six participants (4.9%) indicated that their teams do not spend any

effort on security. Figure 6.2b shows that overall, the implementation stage had the

highest percentage of effort spent on security throughout the SDLC (µ = 24.3%,Md =

20%), followed by the design stage (µ = 18.4%,Md = 15%). The code analysis stage

had the lowest average percentage (µ = 9.4%,Md = 10%).

We used Friedman’s ANOVA to determine whether the distribution of security

efforts significantly differs across the different SDLC stages. Statistical test results

are presented in Table 6.3. We found that security effort in the implementation stage

was significantly higher than in the code analysis, developer testing, code review,

and post-development testing stages. Security effort in the design stage was also

significantly higher than in the code analysis and code review stages.

6.3.2 Behaviours and Attitudes

We asked participants to indicate on a 4-point Likert scale their agreement with

statements about their teams; how they view software security, whether they have

126

Table 6.3: Within subject statistical analysis comparing security efforts in SDLC
stages. The table only shows significant differences from the pairwise comparisons.

Variable Test results

Security
efforts

∗∗χ2
F (5) = 78.9, n = 123

design - code analysis ∗∗r = 0.3
design - code review ∗r = 0.2

implementation - code analysis ∗∗r = 0.4
implementation - code review ∗∗r = 0.4
implementation - dev. testing ∗∗r = 0.3

implementation - post-dev. testing ∗∗r = 0.3

∗p < 0.05,∗∗ p < 0.01, bold item has higher mean

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

security is important

we have security procedures

‡ we have considered security

sw isn’t interesting target

strongly disagree disagree agree strongly agree

Figure 6.3: Participants’ opinion of their teams. (‡: This question was reverse scored
and reworded for clarity)

security procedures, whether they consider their software an interesting target for

attackers, and whether they have considered the security of their software.

As shown in Figure 6.3, only 20% of our participants indicated that their teams

have not considered the security of their software. Although 37% of our participants

do no think their applications are interesting targets for attackers, we found promising

attitudes towards software security. The vast majority of our participants indicated

that their teams believe that software security is important (93%) and that they

have specific procedures in place to address software security (81%). All participants,

except one, who reported security is not important for their teams also indicated that

their software is not an interesting target for attackers (see Table 6.4).

127

Table 6.4: Number of participants (n) indicating their agreement that security is
important for their team and that their software is an interesting target for attackers

Sec. is important sw is a target n

X X 77
X × 37
× X 1
× × 8

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

satisfied with procedures

strongly disagree disagree neither agree nor disagree agree strongly agree

Figure 6.4: Satisfaction with teams’ procedures

6.3.3 Experiencing Security Issues

We asked participants to indicate (on 5-point Likert scales) their satisfaction with

their teams’ security processes and the likelihood that their software contains vulner-

abilities.

In general, as Figure 6.4 shows, most of our participants are satisfied with their

teams’ handling of software security (62%), whereas only 14% indicated dissatisfac-

tion. Despite their satisfaction, only 18% of participants believed their software is free

of security issues; more than half of our participants (51%) indicated that software

developed by their team likely contains security issues (Figure 6.5).

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

likelihood of vulnerablities

extremely unlikely unlikely neither likely nor unlikely likely extremely likely

Figure 6.5: Likelihood of the existence of vulnerabilities in team’s code

Participants were asked to report whether their software has experienced a security

issue at some point.

More than a third of our participants reported that their software experienced

128

0 5 10 15 20 25 30 35 40

security breach

shipped vulnerability

unshipped vulnerability

no issues

don’t know/no answer

% of participants

ty
p

e
of

is
su

e

Figure 6.6: Types of security issues experienced by participants’ companies.

personally other team
developers

team leaders management users
0

20

40

60

80

100

%
of

p
ar

ti
ci

p
an

ts

less concerned no change more concerned don’t know/no answer

Figure 6.7: Long term effect of experiencing security issues on awareness and concern
for security (n = 43).

at least one security issue. As shown in Figure 6.6, out of the three potential secu-

rity issues presented to participants in the survey, vulnerable shipped code was most

frequently reported (24%). Fourteen percent of the participants reported their soft-

ware contained vulnerabilities that were discovered before it was shipped, and 11%

reported their software experienced a security breach. We note that these numbers

are not mutually exclusive; some participants (11%) indicated that their software

suffered multiple security issues.

For participants who reported security issues (n = 43), we explored the long-term

reaction to experiencing such issues by the different stakeholders. Although it may

129

be expected that awareness and attitude towards security improves right after expe-

riencing an issue, our data suggests that this improvement in security awareness and

attitude is longstanding. Figure 6.7 shows that the majority of our participants (79%)

indicated that experiencing a security issue increased their awareness and concern for

security over the long-term. Our participants also reported the same effect on other

developers in their teams (77%), team leaders (88%), higher management (74%), and

users (49%). This supports our findings in Chapter 4 that experiencing a real-threat

helps avoid the optimistic bias and can lead to improved attitudes and behaviours

towards security.

Forty-four percent of participants indicated that their company experiencing se-

curity issue(s) and this did not change their users’ awareness and concern for security.

“Users” had the highest percentage of “no change” across the different stakeholders,

as shown in Figure 6.7. This is reasonable given that users are not typically aware of

such software security issues unless, e.g., a security breach is publicized.

6.3.4 Strategies to Address Software Security

We presented participants with a list of 16 potential strategies for handling software

security (see Q26 in Appendix C). This list is based on strategies discussed by par-

ticipants in the interview study. We asked participants to rate their agreement with

relying on these strategies on a 5-point Likert scale ranging from 1: (strongly disagree)

to 5: (strongly agree).

Figure 6.8 shows participants’ agreement/disagreement with relying on different

strategies for handling software security. We note that the figure does not show

whether these strategies are favourable for security (i.e., blue and green are not

necessarily advantageous for security).

As shown in Figure 6.8, most participants indicated that when working on a se-

curity issue, they rely on support by their colleagues who faced similar issues. In

addition, the majority of participants reported relying on those with more experience

in their workplace for security advice. More than half of our participants also indi-

cated relying on their own mental checklists of security issues they need to consider, or

on company-wide support, such as security documentations and checklists, and tools

130

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

relying on colleagues[S9]
experts’ support[S11]

baselines standards[S2]
mental checklist[S6]

sec. integrated in checks[S12]
sec. implicit in tools[S13]

sec. docs.[S14]
deadline extensions[S4]

inhouse tools[S3]
programming tools[S1]
reviewers’ support[S16]

receive specific instr.[S15]
informal advice[S10]

personal best practices[S7]
make time for sec.[S5]

postponing sec.[S8]

strongly disagree disagree neither agree nor disagree agree strongly agree

Figure 6.8: Strategies for handling software security (n = 82). ([Si] represents the
statement’s label in Q26 in Appendix C)

and automated checks where security best practices have already been integrated.

We performed factor analysis to integrate these 16 strategies to a smaller set.

Table 6.5 presents the factor analysis results. Through our analysis, we found that

12 of the strategies could be grouped into two factors; four strategies did not con-

form to any factor. We named the first resultant factor: company-wide engagement,

as it describes how developers rely on strategies and support by their companies,

e.g., through relying the more experienced members of the team, or through using

custom tools that handle software security. This factor encompassed nine strategies.

The second factor incorporated three strategies and is named: personal strategies,

where developers have devised their own strategies to deal with software security,

e.g., through creating their own mental check-list of security issues to consider.

To use these two factors for further analyses, we created a variable for each factor

by averaging participants’ response to all strategies belonging to the factor. Fig-

ure 6.9, shows that to handle software security, our participants (n = 87) rely more

on company-wide engagement than on their own personal strategies. A Wilcoxon

signed rank test also confirmed this observation (T = 814, p < .01, r = −0.3).

131

Table 6.5: Factor analysis for software security strategies

Variables (Strategies as presented in the survey)
factor

loading

Company-wide Engagement (α = 0.9)

S13 Software security best practices are incorporated in tools we use 0.9
S12 Software security best practices are incorporated in automated

checks we run
0.8

S2 Our company/team has baseline security standards with which
3rd party code should comply

0.8

S11 I can rely on the more experienced members of my com-
pany/team for help and security advice

0.8

S9 When working on a software security issue, I can get help from
others who worked on similar issues

0.5

S3 We built our own in-house frameworks to help guarantee software
security

0.5

S15 I receive specific instructions on how to solve security issues
found in my code

0.5

S14 We have a document/checklist of items that we need to consider
for our application to be secure

0.5

S16 In code reviews, reviewers explain security issues and fixes to me
rather than referring me to resources/books

0.4

Personal Strategies (α = 0.6)

S6 I have my own mental checklist of software security issues that
I need to consider in my code

0.9

S7 I have come up with my own software security best practices 0.7
S5 When a deadline approaches, I try to reduce my workload to

focus on securing my software
0.5

Strategies not belonging to any factor

S1 We rely on libraries and frameworks (including APIs) to help
guarantee software security

S4 I can get deadline extensions to handle software security
S8 If I didn’t have time to address software security, I’d ship the

product after adding a work around that allows me to remotely
disable the software feature suffering a security breach

S10 I prefer to ask for software security advice informally (e.g., by
casually asking a colleague, or through discussions over lunch)

KMO = 0.8

132

1 2 3 4 5

company-wide engagement

personal strategies

*
*

mean Likert-scale response scores

Figure 6.9: Strategies for handling software security after factor analysis (n = 87).
(1:(strongly disagree) – 5:(strongly agree). The figure shows significant difference
between strategies. ∗ : p < .05, ∗∗ : p < .01)

6.4 Motivators and Deterrents to Security

To explore what motivates developers to address software security, we presented our

participants with a list of 21 potential security motivators (see Q24 in Appendix C).

In addition, we presented them with a list of 29 statements that could explain reasons

for deferring or ignoring security (see Q25 in Appendix C). Participants were asked

to rank their agreement with each statement on a 5-point Likert-type scale. These

lists are based on the motivators and amotivators of security discussed in Chapter 5.

6.4.1 Software Security Motivators

We asked participants “I care about security because...” and presented them with

potential motivations for software security. Participants rated their agreement with

each motivation on a 5-point Likert scale, ranging from 1: (strongly disagree) to

5: (strongly agree). Participants also had a “not applicable” option to choose if a

motivation did not apply to their current workplace.

133

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

understanding implications[M9]
enjoying sec. tasks[M17]

shared responsibility[M14]
caring abt. users[M12]

caring abt. co. reputation[M11]
self challenging[M18]
losing customers[M2]

perceived benefits[M8]
personal responsibility[M15]
enjoying sec. learning[M16]

colleagues’ sec. attitudes[M10]
publicized breaches[M21]

mandatory sec. practices[M7]
external audits[M1]

co. culture[M13]

recognition[M4]
business loss[M3]

career growth[M5]
relevant breach[M19]

experiencing breach[M20]
financial rewards[M6]

strongly disagree disagree neither agree nor disagree agree strongly agree

Figure 6.10: Software security motivators (n = 63). ([Mi] represents the statement’s
label in Q24 in Appendix C)

As shown in Figure 6.10, the top six motivators for software security are all au-

tonomous motivations that are internally driven. The vast majority of participants

indicated that they care about security because they understand their code can have

security implications, they enjoy addressing security issues in their code, they consider

security as a shared responsibility by all those involved in the SDLC, or because they

care about their users and their company reputation, or because they like to challenge

themselves to writing secure code. On the other hand, participants indicated that

receiving financial rewards (an external motivation) was least motivating.

We used factor analysis to combine the 21 potential motivators into a smaller set.

Table 6.6 presents the results. Our factor analysis grouped 15 of the motivators into

four factor; six motivators did not conform to any particular factor. We named the

factors: workplace environment, identifying with security importance, rewards, and

perceived negative consequences. To use these factors for further analyses, we cre-

ated a variable for each factor by averaging participants’ responses to all motivators

belonging to the factor. Figure 6.11 shows participants’ (n = 76)1 motivations to

1We could only include data from participants who answered all questions in each factors.

134

Table 6.6: Factor analysis for motivation

Variables (Motivators as presented in the survey)
factor

loading

Workplace Environment (α = 0.9)

M13 Software security is in my company’s culture 0.7
M7 My company mandates security practices & I have to follow them 0.7
M10 My colleagues care about software security 0.6
M8 I see the benefit in security practices mandated by my company 0.6

Identifying with Security Importance (α = 0.8)

M14 Software security is a shared responsibility by all those involved in
the development lifecycle

0.8

M12 I care about my users’ security and privacy 0.7
M9 I understand that my code can have security implications 0.6
M16 I feel good when I learn about software security 0.6
M15 I see software security as my responsibility 0.6
M11 I care about my company’s reputation 0.4

Rewards (α = 0.8)

M6 My efforts towards software security are financially rewarding 0.8
M4 My efforts towards software security are recognized 0.8
M5 My efforts towards software security help me grow in the company 0.7

Perceived Negative Consequences (α = 0.6)

M21 I realized securing my code is important after reading about security
breaches in the news

0.7

M1 My company is audited for software security by an external entity 0.6

Motivations not belonging to any factor

M2 My company would lose customers in case of a software security
breach

M3 My company could fail (cease to operate) in case of a software
security breach

M17 I feel good when I address potential security issues in my code
M18 I like to challenge myself to write secure code
M19 Similar software to that on which I work suffered a security breach

and management now cares about securing our applications
M20 Similar software to that on which I work suffered a security breach

and it was an eye-opener for me

KMO = 0.9

135

1 2 3 4 5

workplace environment

identifying with security importance

rewards

perceived negative consequences

*
*

*
*
*

*
*

*
*

mean Likert-scale response scores

Figure 6.11: Motivations for software security after factor analysis (n = 76).
(1:(strongly disagree) – 5:(strongly agree). The figure shows significant difference
between motivations. ∗ : p < .05, ∗∗ : p < .01)

include software security in their work. Whereas external rewards had the lowest me-

dian for participants’ agreement, identifying with the importance of software security

(e.g., viewing security as a shared responsibility and caring about users’ security) was

the motivator with the highest median. The motivating factor with the second high-

est median agreement was workplace environment (e.g., security is in participants’

company culture and their colleagues also care about security).

In fact, we found statistically significant difference between the four software secu-

rity motivators (χ2
F (3) = 85.75, p < .01). Pairwise comparisons using Wilcoxon tests

with Bonferroni correction were used to follow up this finding. We found that rewards

was the least significant motivator compared to workplace environment (T = 1.13, p <

.01, r = 0.44), identifying with security importance (T = 1.78, p < .01, r = 0.69), and

perceived negative consequences (T = −0.95, p < .01, r = −0.37). In addition, it ap-

pears that identifying with the importance of security is the most motivating factor;

it can motivate developers more than perceived negative consequences (T = 0.83, p <

.01, r = 0.32) and workplace environment (T = −0.65, p < .05, r = −0.25).

136

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

no formal plan[D20]
unaware of tools[D22]

sec. is low priotity[D9]
non-sec. sensitive s/w[D15]

no people-power[D25]
no knowledge[D24]

no breaches[D16]
no budget[D26]

attacks are unlikely[D14]
another’s responsibility[D5]

losing business opportunity[D10]
other priorities[D8]
sec. is ignored[D7]

no need to change[D27]
no accountability[D13]

no repercussions[D11]
not my responsibility[D1]

no time[D23]
tools handle sec.[D6]

extra burden[D3]
not mandatry[D4]

established procedures[D28]
doesn’t fit schedule[D2]

no one else cares[D18]
unuseful sec. tools[D21]

perceived negatively[D19]
passive colleagues[D17]

sec. is unconsequential[D12]

resisting sec.[D29]

strongly disagree disagree neither agree nor disagree agree strongly agree

Figure 6.12: Deterrents to software security. ([Di] represents the statements label in
Q25 in Appendix C)

6.4.2 Deterrents to Software Security

Participants rated their agreement with potential deterrents to software security on

a 5-point Likert scale, ranging from 1: (strongly disagree) to 5: (strongly agree).

Interestingly, our participants generally oppose statements that imply deferring or

ignoring security, as suggested by the overwhelming red and orange chart in Fig-

ure 6.12. However, the biggest deterrent to software security was not having a formal

plan or process, followed by participants’ unawareness of the existence of tools that

would analyze their code security.

Our factor analysis combined 18 of the 29 software deterrents into four factors; 11

deterrents did not correspond to any particular factor. Table 6.7 presents the results

of the analysis. Our first two factors are security is irrelevant and competing priorities

& no plan. These factors describe how a lack of security can stem from systemic causes

137

within the company or team such as whether there are consequences for the lack of

security, how much of a priority is security, and if there are specific security plans

in place. The other two factors, unequiped for security and disillusioned, describe

security deterrents on a more personal level, e.g., a lack of support, knowledge, and

awareness can deter developers from addressing software security, as well as being in

a workplace environment that thwarts security efforts, rather than nurtures them.

Table 6.7: Factor analysis for security deterrents

Variables (Deterrents as presented in the survey)
factor

loading

Security is Irrelevant (α = 0.8)

D1 Software security is not my responsibility because it’s not in

my job description

0.6

D15 The software I develop is not prone to security attacks 0.6

D16 Things are fine as they are, we haven’t experienced any secu-

rity breaches

0.6

D11 There are no repercussions to ignoring software security 0.6

D12 We do not have competition, so we won’t lose customers in

case of a software security issue

0.5

D5 Software security is handled by someone else in the product

lifecycle

0.5

Competing Priorities & no Plan (α = 0.9)

D20 We do not have a formal process for software security -0.7

D4 Software security is not mandated by my employer -0.7

D8 We defer software security due to competing priorities -0.7

D7 My team doesn’t spend any specific efforts towards software

security

-0.6

D9 In my team, it is more important to deliver features on time

than to address software security

-0.6

Unequipped for Security (α = 0.8)

138

. . . continued

Variables (Deterrents as presented in the survey)
factor

loading

D22 I am not aware of tools that would allow security analysis of

my code

0.8

D24 I do not have necessary knowledge to address software security 0.6

D21 Available security code analysis tools are not useful 0.5

D28 We have been following the same procedures for years and I

don’t want to change them

0.5

Disillusioned (α = 0.9)

D18 I understand the importance of addressing security, but I

won’t waste my time on it since no one else does

-0.7

D19 I used to push for software security, but I was perceived neg-

atively by my colleagues

-0.7

D17 No one else cares about software security, I won’t either -0.6

Deterrents not belonging to any factor

D2 Software security does not fit in my schedule

D3 Software security is a burden on top of my main responsibili-

ties

D6 We don’t have to worry much about security because frame-

works [...] we use handle software security for us

D10 If we focus more on software security, we might lose our busi-

ness opportunities

D13 I won’t be blamed if a security issue is found in my code

D14 It’s unlikely that attackers will attack us

D23 I do not have time to address software security

D25 There aren’t enough people in my team to address software

security

D26 My team does not have the budget to address software secu-

rity

139

. . . continued

Variables (Deterrents as presented in the survey)
factor

loading

D27 We’re doing fine, I don’t think we should change in terms of

software security

D29 I tend to resist when I get assigned a security task

KMO = 0.9

Considering the four factors, as shown in Figure 6.13, the deterrent with the least

median agreement was disillusioned (e.g., due to being perceived negatively by their

colleagues when they push for security). The two factors with the highest median

agreement for being deterrents to software security were (1) being unequipped for

security because of a perceived lack of security knowledge or because the necessary

tools were unavailable, and (2) competing priorities & no plan, where security has a

lower priority than other aspects of the software and the team does not have specific

security plans or procedures.

We found statistically significant difference between participants’ responses for the

four factors (χ2
F (3) = 51.1, p < .01). Pairwise comparisons using Wilcoxon tests with

Bonferroni correction, showed that being disillusioned was less likely than thinking

security is irrelevant (T = 0.7, p < .01, r = 0.3), having competing priorities & no

plan (T = 0.9, p < .01, r = 0.3), and being unequipped for security (T = 1, p <

.01, r = 0.4). No other pairs showed significant differences.

6.5 Effect of Different Characteristics on Software Security

In this section, we focus on three main characteristics that may influence software

security overall. These characteristics are: the type of development methodology used

by the participants’ teams, the size of the company to which participants’ teams be-

long, and whether they perform TDD. Table 6.8 summarizes our between-subject test

results exploring whether each of the mentioned characteristics influences how security

fits in the development lifecycle, and motivations and deterrents to software security.

140

1 2 3 4 5

security is irrelevant

competing priorities & no plan

unequipped for security

disillusioned

*
*

*
*

*
*

mean Likert-scale response scores

Figure 6.13: Software security deterrents after factor analysis. (1:(strongly disagree)
– 5:(strongly agree). The figure shows significant difference between motivations.
∗ : p < .05, ∗∗ : p < .01)

More specifically, we focus on whether the development method, company size, or

adopting TDD influence security efforts, software security strategies, behaviours and

attitudes, security motivators, or deterrents to software security.

6.5.1 Development Methodology

We explore the effect of the development methodology used on software security.

Particularly, we focus on the three development methodologies with the highest per-

centages of participants in our data: Waterfall (22%), Iterative(21%), and Agile de-

velopment(47%).

Our analysis using Kruskal-Wallis tests with Bonferroni-correction shows that the

development methodology did not have a significant effect on any of the variables

tested (see Table 6.8). We did not find evidence that the development method influ-

enced the percentage of overall effort that teams direct to software security, nor did

it influence how they distribute their effort per development stage. In addition, the

141

Table 6.8: Between subject statistical analysis of the effect of development method-
ology, company size, and adopting TDD on software security

Variable method co. size TDD - non-TDD
Security efforts

overall ns ns
TDD - non: (n = 114)
∗∗U = 905, r = −0.2

design ns ns ns
implementation ns ns ns
dev. testing ns ns ns

code analysis ns ns
TDD - non: (n = 114)
∗∗U = 554.5, r = −0.3

code review ns ns ns
post-dev testing ns ns ns

Behaviours and attitudes

security is important ns ns ns

we have security procedures ns ns
TDD - non: (n = 114)
∗U = 995.5, r = −0.1

sw isnt interesting target ns ns ns
‡we have considered
security

ns ns ns

Strategies to handle software security

company-wide engagement ns ns
TDD - non: (n = 80)
∗∗U = 397, r = −0.3

personal strategies ns ns
TDD - non: (n = 80)
∗U = 506, r = −0.2

Software security motivators

workplace environment ns
SME-LE: (n = 76)
∗U = 861, r = −0.2

ns

identifying with security
importance

ns† ns ns

rewards ns† ns
TDD - non: (n = 68)
∗∗U = 453, r = −0.1

perceived negative
consequences

ns† ns ns

Deterrents to software security

security is irrelevant ns ns ns
competing priorities & no
plan

ns
SME - LE:
∗U = 1345.5, r = −0.2

ns

unequiped for security ns
SME - LE:
∗U = 1413, r = −0.1

ns

disillusioned ns ns ns

∗p < .05,∗∗ p < .01, bold item has higher mean. ns : not significant. ‡: a reverse scored question.
†: indicates that test was significant, however, pairwise comparison indicated non-significance

142

development methodology had no influence on behaviours and attitudes towards se-

curity (cf. Section 6.3.2), software security strategies (cf. Section 6.3.4), or deterrents

to software security (cf. Section 6.4). Our results indicated that the development

methodology may influence some security motivations, identifying with security im-

portance (H(2) = 7, p < .05), rewards (H(2) = 6.4, p < .05), and perceived negative

consequences (H(2) = 6.4, p < .05). However, follow-up pairwise comparisons with

Bonferroni-correction were insignificant.

6.5.2 Company Size

To explore whether the size of the company influences software security, we classified

our participants’ companies into either SMEs or Large Enterprises (LEs). Follow-

ing the classification used in North America [34, 70], a company with fewer than

500 employees was classified as SME, and LE otherwise. Our dataset contained 49

participants (40%) in SMEs and 74 (60%) in LEs.

Using Mann-Whitney tests, we did not find evidence that the company size in-

fluenced the percentage of effort on software security, in the SDLC overall or per

development stage. In addition, it did not influence participants’ security attitudes

and behaviours, nor did it influence their strategies towards software security.

However, our results show a significant difference in security motivations between

SME and LE participants. Being in a workplace environment that nurtures security

was more motivating for participants in LEs, compared to those in SMEs.

Our results also show that deterrents to software security vary significantly with

company size. Specifically, having competing priorities & no plan is a significant de-

terrent to security for participants in SMEs compared to those in LEs. Likewise, being

unequipped for security, e.g., not having the necessary security awareness and knowl-

edge, and the lack support, is a significant deterrent to security for SME participants

compared to their counterpart.

6.5.3 Test-Driven Development (TDD)

Out of the three characteristics explored, TDD most influences software security.

Our results show that efforts directed towards software security are influenced by

143

whether the team performs TDD. Participants who perform TDD spend significantly

more overall effort on security than those who do not perform TDD. Focusing on each

SDLC stage, TDD participants spend significantly higher efforts towards security

during code analysis than their counterpart.

Moreover, TDD influences some behaviours and attitudes towards security. Specif-

ically, significantly more TDD participants indicated that they have specific proce-

dures to address software security (U = 995.5, p < 0.05, r = −0.1).

We also found that adopting TDD influences software security strategies. TDD

participants rely significantly more on company-wide engagement for support in han-

dling software security than non-TDD participants. Similarly, they rely on their own

personal strategies to handle software security significantly more than participants

who do not perform TDD.

Finally, our results show that TDD participants are not significantly different than

those who do not perform TDD when it comes to security deterrents and the majority

of security motivators. However, we found that rewards is a more significant security

motivator to TDD participants compared to their counterpart.

6.6 Discussion

In general, our results are promising for software security. Whereas previous re-

search [175, 179, 182] found that developers generally exhibit a “security is not my

responsibility” attitude, the vast majority of our participants did not dismiss security.

They acknowledge the importance of software security and have specific procedures in

place to address it. The few participants who indicated security is not important for

their teams indicated that their software is not an interesting target to attackers. We

do not imply that completely ignoring security is acceptable, but rather consider the

possibility that these teams may be making an educated economic decision, having

assessed the risk and found that it was negligible.

In addition, our participants exhibited consciousness of the adequacy of their

security efforts. It is interesting that some participants (n = 33) indicated that

security is important for their teams and that they are satisfied with how they are

handling software security, but also indicating that their software is likely vulnerable.

144

We did not expect this combination. One explanation could be that participants

were being pragmatic; there will always be security issues and you can never prove

security [76]. Another explanation could be that participants are satisfied that they

are doing their best to ensure security, even if it may not be ideal or enough. If

that is the case, further exploration is needed into whether, and why, these teams’

security practices are insufficient. In Chapter 4, we discussed that a lack of resources

may discourage teams from addressing security or following security best practices.

In fact, we found evidence in our survey data that the lack of resources may be why

participants believe that their applications are vulnerable, despite being satisfied with

their practices. For example, 45% (15 of 33) of participants displaying this interesting

combination indicated they lack at least one of: knowledge, awareness, budget, tools,

time, and people-power to handle software security.

We will now discuss and answer the three research questions introduced at the

beginning of this chapter.

6.6.1 RQ1: How Does Security Fit in the Development Lifecycle in Real

Life?

Effort directed specifically towards software security in the SDLC varied between par-

ticipants. It is infeasible to determine whether the reported percentages of effort are

adequate. In general, we found that participants focus their security efforts during

implementing rather than in later stages. Reasons for this are unclear. It could be be-

cause they try to get it right from the beginning, thus reducing the effort needed dur-

ing later stages, or it could be because later stages are mainly functionality-oriented.

Although participants reported personally-devised strategies to handle software se-

curity (e.g., mental checklists), they also rely significantly on their companies’ and

teams’ support and guidance. Participants rely on their colleagues’ support (conform-

ing with previous research [29, 91]) and support from members with higher security

expertise. In addition, they rely on their company/team to ensure a secure founda-

tion for their software, e.g., through mandating a baseline standard for third-party

code or developing in-house tools to handle security. This re-affirms the importance

of companies’ role in promoting and ensuring software security, through promoting

145

security learning opportunities and collaboration between employees, especially for

security.

Although promising, the state of software security is not optimal. More than

third of participants indicated that their companies faced security issues, ranging

from vulnerabilities discovered in unshipped code to actual security breaches. It

could be because functionality and on-time shipping was prioritized and security was

postponed. In fact, seven out of the thirty participants who reporting vulnerabilities

in shipped code indicated that when deadlines approach, they ship their code with

a backdoor that allows them to address the security issues later. This behaviour is

clearly troubling.

The silver lining to experiencing a security issue is that it improved software

security awareness for the different stakeholders (developers, team leaders, higher

management, and users). This confirms that experiencing such adverse events helps

refute the optimistic bias and promote security awareness. In fact, we found that read-

ing about security breaches, experiencing a security breach first-hand, and knowing

about a relevant software that suffered a security breach are all motivators to security.

However, we could not determine which had greater impact on our participants.

6.6.2 RQ2: What are The Current Motivators and Deterrents to Devel-

opers Paying Attention to Security?

Participants’ software security motivation pattern appears to match their general

work motivation pattern. The vast majority of our participants are self-determined

and autonomously motivated towards their work in general, as well as towards soft-

ware security. Their top software security motivators are all intrinsic and internal

motivations. In fact, identifying with the importance of software security was the

highest motivator, whereas receiving rewards, as an external motivator, was least

popular.

On the other hand, confirming our previous findings (cf. Section 4.4.2), being

ill-equipped to handle security (e.g., due to lacking resources or support) was the

highest deterrent to software security. Next was not having a specific security plan

and having to deal with competing priorities. These are reasonable reasons that

146

may prevent teams or developers from focusing on software security. By identifying

these deterrents, we can focus our efforts on overcoming them, e.g., as discussed

in Chapter 4, by devising lightweight best practices that do not require extensive

resources, or through better support for teams to devise security plans that fit their

resources and work styles.

6.6.3 RQ3: Does the Development Methodology, Company Size, or Adopt-

ing TDD Influence Software Security?

Contrary to previous literature [26,31,144], our results suggest that the development

methodology does not significantly influence teams’ handling of software security.

On the other hand, company size had some effect, impacting software security

motivations and deterrents. Being in a workplace environment that, e.g., promotes

security culture and practices, was more motivating for LE developers, compared to

those working in SMEs. For SMEs, being unequipped to handle security and having to

deal with competing priorities while lacking concrete security procedures and plans

were significant deterrents to software security. It appears that LEs , being more

established compared to SMEs, can focus on building a security-oriented workplace

and can afford to prioritize and plan for security.

TDD was the most influential characteristic that we explored. Adopting TDD

appears to be associated with higher security efforts overall, and particularly during

the code analysis stage. In addition, TDD teams appear to take a more structured

approach towards security by having specific security procedures in place, compared

to non-TDD teams. Moreover, TDD developers were more likely to rely on company-

wide strategies and support, as well as their own personally-devised strategies, to

handle software security. In terms of security motivations, receiving rewards is a

significant motivator for TDD developers compared to their counterpart. Adopting

TDD did not influence security deterrents.

6.7 Limitations

Our survey was conducted online, which may have influenced data quality. However,

we took different measures to filter out poor quality responses. All our results are

147

based on participants’ self-reported responses, which may be subject to bias and may

not exactly represent real-life. For example, in the security motivations questions,

participants were given a “not applicable” option in case a motivator did not apply

to their workplace. However, we cannot be sure if all participants chose this option

when a motivator did not apply to them. In addition, during our factor analyses,

Likert-scale data was treated as continuous data, rather than ordinal data. However,

some researchers [68,97] argue that Likert-scale data may be used in parametric tests,

especially if they employ at least a 5-point scale [85].

6.8 Conclusion

We presented a survey study with 123 participants to explore how they address soft-

ware security, as well as security motivators and deterrents. Participants consider

security as part of their development process to varying degrees. Most interestingly,

we believe that our results affirm that developers are not the weakest link. Our anal-

ysis shows that our participants are self-driven in their work in general, as well as

in their motivation towards software security. Thus, developers in our study are not

explicitly ignoring security, dismissing it, or considering it not part of their respon-

sibility. In fact, identifying with the importance of software security was the highest

motivator. In addition, developers in our study are not oblivious to the state of secu-

rity; they believe that it is important and some of them are not always satisfied with

their teams’ processes. Although typically not their primary task, the majority of

participants objected to statements in our survey that implied deferring or ignoring

security.

Chapter 7

Discussion, Future work, and Conclusions

In this chapter, we discuss our research contributions, provide insights on conducting

similar studies with developers, answer the research question posed in Chapter 1, and

provide concluding remarks.

7.1 Thesis Contributions

In Section 1.3, we discussed the research question and objectives for this thesis. In

general, this thesis adds to the growing body of research focusing on the human factors

of software security, specifically organizational processes, strategies employed by de-

velopers to handle software security, and developers’ security knowledge, motivation,

and attitude. We now outline the contributions of this thesis.

Supporting collaboration and exploration during security code analysis.

We evaluated the usability of FindBugs [5], a popular SAT, to explore issues faced by

developers while analyzing their code. Our study revealed serious usability issues. We

then took a user-centered approach to design a visual environment to support source

code analysis, while overcoming the usability issues we uncovered in FindBugs. We

prototyped and evaluated the usability of our approach. Indeed our evaluation sug-

gests that our approach can support collaboration amongst developers and encourage

discussion and exploration of potential issues. We also provided general recommen-

dations to guide future designs of code review tools and enhance their usability.

Investigating software security status-quo. Through interviews and an online

survey study with software developers, we investigated software security status quo.

Our studies revealed varying approaches to software security. To facilitate comparison

of existing practices to best practices, we amalgamated software security best practices

148

149

extracted from the literature into a concise list (Section 4.3). Interview data analysis

showed that real-life security practices differ markedly from best practices identified

in the literature. Best practices are often ignored, as compliance would increase the

burden on the development team. However, the survey data implied that developers

are not intentionally ignoring security, and in some cases, they are even dissatisfied

with their teams’ security processes. We discussed factors that influence software

security processes (Section 4.4.2), such as security knowledge and external pressure.

Proposing a security knowledge acquisition taxonomy. We developed a tax-

onomy (Table 5.1) of software security learning opportunities through further analysis

of interview data. Some of these opportunities were not explicitly regarded as learn-

ing methods, though our analysis revealed their potential for knowledge acquisition.

We explained how the learning opportunities varied in their formality and the devel-

opers’ motivation to initiate them. Opportunities where learning was a by-product

of developers’ tasks were most common. We discuss how opportunities that require

collaboration within the project team could lead to more coherent teams and help

bridge the gap between developers and security experts.

Exploring motivations and amotivations for software security. We explored

factors that could influence developers’ motivation towards software security (Fig-

ure 5.3). We identified factors that may lead developers to become amotivated to-

wards software security, despite their security background. In addition, we identified

motivations to software security and explained how they vary in their degree of in-

ternalization (whether developers perceive their actions as self- or externally-driven).

We discuss the importance of transforming software security activities from being

externally-driven to being driven by developers’ own volition. We also discuss how

this can have a positive impact on performance and learning.

Proposing a model for internalizing software security. To help promote the

internalization of software security, we proposed a human-oriented model (Figure 5.4)

to describe how software security external motivations can be transformed into inter-

nal motivations. The model highlights the role of knowledge acquisition opportunities

150

and collaboration within the project team in promoting and facilitating the internal-

ization process. We based the model on successful motivation strategies identified in

our studies, while overcoming factors that could lead to amotivation.

7.2 Insights on Conducting Studies with Developers

In the research presented herein, we recruited developers currently employed in in-

dustry for our interview study and online survey study. In our experience, recruiting

developers was a more complicated process than recruiting typical end-users.

Interview studies. Participants were generally busy and time-constrained; inter-

views were usually held during lunch breaks, in the evenings, or on the weekend.

Some participants had to reschedule multiple times due to approaching deadlines or

unexpected conflicting team meetings.

In addition, developers may be restricted by their companies on what they can

reveal about their processes and their typical workday, or they could just be self-

conscious about what they say “on-record”. For example, while informally talking

to developers about our research during development-oriented meet-ups, they were

engaged in the discussion, offering their insights and their own experiences. However,

the majority were reluctant to participate in the interview study. One developer ex-

plicitly explained that he was worried that participating would be against his company

policy.

Moreover, software security can be a sensitive topic. For example, when develop-

ers talk about specific practices or vulnerabilities in their code, this could later be

exploited by malicious actors if the company’s identity was somehow revealed. In

our interviews, multiple participants revealed their company’s name and names of

partner companies, despite our instructions not to do so. In addition, some develop-

ers may be worried that revealing some information may negatively influence their

companies’ reputations. For example, one of our participants repeatedly confirmed

that his company would not be linked to his interview data before discussing flaws in

their security practices.

Suggestions for future research. Rather than addressing all the research topics

151

in one interview, perhaps researchers could divide the topics across multiple inter-

views. This would shorten the duration per interview session, which could encourage

more developers to participate. Also, in addition to typical recruitment methods, re-

searchers could consider reaching out to managers or team-leaders to announce studies

to their developers, if participation was allowed per company policy. This could help

alleviate worry of developers who are concerned that participation is frowned-upon

by their company. Moreover, clearly explaining to developers the interview’s topics

of discussion, as well as the precautions taken to protect their and their companies’

identities may ease developers’ skepticism and encourage them to participate.

Online surveys. We recruited participants using a paid-service, as well as through

announcements to developers and snowballing. In general, participation rate in the

survey study was better than the interview study, which could be because the survey

was anonymous and required less time-commitment.

Recruitment through the paid service was relatively fast, yet expensive. Thus,

for large projects, using the paid-service would require a considerable budget. In

addition, some participants recruited through the paid service were not paying proper

attention, or were just clicking through the questions. For example, some participants

would (illogically) indicate they spent longer in their current teams than in their

companies. Participants recruited through the paid-service were also more likely to

skip qualitative questions, or include minimalistic (unhelpful) responses. On the other

hand, participants recruited through announcements and snowballing provided better

data quality and more insightful responses to qualitative questions. It seems that

recruiting through announcement and snowballing creates an implicit social contract

that is lacking when recruitment occurs through a paid-service.

Suggestions for future research. Employing measures to ensure data quality is

important for survey studies. Our experience showed that it is especially important

when recruiting through a paid-service, where some participants may be gaming the

system. Some services offer to replace poor quality responses at no additional cost,

thus researchers have the opportunity to weed out such poor quality responses by

employing multiple strategies in their surveys. We looked for inconsistencies, such as

152

comparing duration participants have been working in development in general ver-

sus in their current company, or comparing responses to a factual question that was

asked multiple times. In addition, in our experience, participants gave relatively brief

responses to qualitative questions, thus this type of data may be better collected

through interviews. Surveys can be used with closed-ended questions (e.g., multi-

ple/single choice questions and Likert-scale type questions), and include open-ended

questions for clarifications.

7.3 Answering the Thesis Research Question: Recommendations for Sup-

porting Developers

Software developers are responsible for making decisions that can impact the security

of their whole user-base [13]. However, developers do not always have the security

expertise to make these decisions [13,71]. In this thesis, the main research question is

“How can we support the human dimension of software security throughout the SDLC

by better understanding factors that motivate, or impede, security efforts?” Based

on our research, we make the following recommendations to support efforts towards

software security without adding a substantial burden on the developers.

Encourage sharing of responsibility and collaboration.

Companies should portray security as a shared responsibility of all those

involved in the development process while promoting collaboration within

and between teams.

As shown in our analysis in Chapter 4, some developers are dissociated from the

responsibility of software security—developers implement while security testers han-

dle security. In addition, our analysis in Chapter 4 (page 75) showed an example

where relying on a single operations-level engineer resulted in adhoc security pro-

cesses and led developers to perceive the engineer as an outsider. In contrast, we

found that considering security a shared responsibility leads to better engagement

in security processes and less push-back. We do not imply that the security novice

and the experts have equal responsibilities, rather that no one should be completely

153

exempt from the responsibility. “Recognize that defense is a shared responsibility”

is one of the best practices identified in the literature (cf. Section 4.3), however,

we extend it to highlight that this has to be infused with the encouragement to col-

laborate within and between the different teams involved in the SDLC. Chapter 5

explored how developers collaborate with each other as well as with other teams, e.g.,

through seeking the advice of the more experienced. We found that these developers

spoke about their teams as unified systems working towards a common goal, and

that through collaboration, each team worked towards acquiring deeper knowledge

of the software from the other teams’ perspective. Thus, as suggested by our anal-

ysis, collaboration leads to more coherent teams, reduces conflicts, and helps bridge

the gap [165] between developers and security experts. Our prototype presented in

Chapter 3 showed how a visual analysis environment could support collaboration and

encourage discussions and exploration during security code analysis.

Support developers in-context.

Companies should support developers in-context of their tasks to reduce

frustration with security-related tasks, and further promote collaboration

between developers and security experts.

Security in software development is cognitively-demanding [119] and developers

need support especially when dealing with security tasks [71]. Previous research rec-

ommended in-context security training for developers [119] (e.g., through the inclusion

of tools in their IDEs [115,165,180]). We extend this by also recommending facilitat-

ing human support for developers in context of their tasks. Beyond tool support, we

highlight the importance of “people support”. We found, conforming with previous

research (e.g., [91]), that developers often turn to their colleagues for help, and that

interacting with those who have security expertise can positively influence software

security. Our analysis revealed approaches towards incorporating people support in-

context of developers’ tasks, to help reduce frustration with security-related tasks,

and further promote collaboration between developers and security experts. For ex-

ample, this was done through establishing a security advisory group that developers

154

can turn to for support and advice about securing their applications. In-context

people support was also done by ensuring that code review and testing feedback is

informative, e.g., that it opens a dialogue with the developers, and that it includes

steps to follow to reproduce the security issues detected and specific steps that the

developer can follow to fix these issues.

Support implicit learning opportunities.

Companies should support implicit learning opportunities to promote se-

curity knowledge without burdening the developers.

In Chapter 5, we provided a taxonomy of different security learning opportunities

identified in our data. Although not explicitly regarded by our participants as learning

methods, we identified implicit learning opportunities in-context of developers’ tasks.

For example, participants discussed that code review, testing feedback, and advice

provided by security experts includes an explanation of the types of issues detected

and sometimes even explains their implications. In Section 5.2.4, we discussed how

this personalized and practical type of learning can be effective in acquiring security

knowledge compared to the one-size-fits-all mandatory training. Task-related security

knowledge is especially important since developers are typically not in a security

mindset while coding and have difficulty mapping abstract security knowledge to

their tasks [119]. By virtue of being part of their tasks, developers may engage in

such hands-on learning, rather than perceiving it as an extra unnecessary burden.

Have an extra set of eyes.

Companies should bring in a new perspective to software security analysis

by including an entity that has not been directly involved in the develop-

ment process.

Including an entity that has not been directly involved in the development pro-

cess (e.g., testers, reviewers, auditors) in analyzing software security can bring in a

new perspective who may see beyond best-case scenarios. Previous work [165] found

155

that some teams rely on auditors to identify vulnerabilities, whereas developers are

responsible for addressing them. Similarly, security practices discussed in Chapter 4

showed that some teams have security checkpoints independent of the development

team. This recommendation does not conflict with our previous recommendation:

“Encourage sharing of responsibility and collaboration”. In fact, we highlight the

importance of positioning this step as part of the SDLC that is intended to help the

developers, rather than laying blame on the developers or relieving them of their re-

sponsibility towards software security. Our work showed that collaboration between

developers and such (external) entities can help avoid negatively perceiving them as

outsiders solely responsible for security and with which developers just have to com-

ply. In addition, our analysis suggests that collaboration is crucial to avoid conflicts,

to make sure this entity has proper understanding of the software, and to reduce false

positives and false negatives.

Focus on internalizing security.

Companies should focus on “humanizing software security” to encourage

developers to act towards it with volition.

Actions that are prompted by internal motivations are associated with better

performance, engagement, and cognitive abilities [141]. Since software security is

typically a hard and demanding task [71, 119], acting towards software security with

internal motivations is likely to produce promising results. In fact, we recognized

through our analysis in Chapter 5 that developers who acted towards security for

reasons that extend beyond mandates had better security processes than others. In

Section 5.4, we discussed how companies and teams can facilitate the internalization

of security by providing adequate support, promoting collaboration between develop-

ers and security experts, and supporting security learning opportunities. In addition,

our analysis suggests that humanizing software security can promote internal secu-

rity motivations, e.g., by familiarizing developers with the implications of the lack of

security on users and organizations while providing clear and concise examples from

real-life security breaches. Moreover, although this has not been directly addressed

156

by our research, we believe that the process of internalizing security can start with

education; software development courses can make developers aware of the conse-

quences on humans in addition to the technical aspects of security. To the best of

our knowledge, our recommendation for internalizing software security has not been

identified in previous literature.

We drew on our research to provide these recommendations to support developers

throughout the SDLC. We acknowledge that implementing these recommendations

is not a trivial task, and that it requires commitment (and potentially resources).

However, our findings suggest that striving to accomplish these recommendations is

worthwhile for improving the state of software security. Our recommendations aim

to reduce the cognitive load on developers, to facilitate security learning, and to

improve the coherence and the security culture in teams. In addition, they aim to

promote security through internal motivations, which are associated with improved

engagement and performance.

7.4 Future Research Directions

This thesis focused on a research area in usable security that is still in its early

stages [13, 65]. In this section, we discuss further research directions.

Observing development teams in their working environment. In this the-

sis, we took a holistic perspective to software security, focusing on security prac-

tices, security motivations, behaviours, and attitudes. Our results are self-reported

through interview and survey studies, and the reasonable next step is to conduct

ethnographic studies to observe development teams in their workplace. This will

provide ecological validity to the results and reduce biases. Through ethnographic

studies, researchers could discover pain points in development and security processes

that may not be evident to developers. In addition, as we found that management can

greatly influence software security processes and motivations, it would be interesting

to further investigate developers’ interaction with their superiors and how this affects

developers’ security practices and motivations. Moreover, in Chapter 4, we found

that some participants’ teams were successful at building a security-oriented culture.

157

Through ethnographic studies, researchers can explore these teams’ motivations and

approaches, which could help other teams in adopting successful security approaches.

Reducing the cognitive load. Performing security tasks and processing security

information introduce a substantial cognitive load on developers [119]. As shown by

our work and previous research (e.g., [13, 119, 165]), developers do not always have

the necessary expertise or time to address security. We highlight the need for better

support for developers through tools and methodologies that reduce this burden. For

example, OWASP currently has a “Secure coding practices checklist” [126] composed

of 214 generic items, some of which may not apply to all applications. Thus, de-

veloping concise application-specific checklists may be an interesting next step. In

addition, existing code analysis tools are lacking in terms of visual representations.

Incorporating visualizations may improve vulnerability analysis by encouraging col-

laboration, exploration, and the discovery of hidden patterns in the code. Moreover,

further research is needed in evaluating and improving the usability and security of

APIs and frameworks that can help take the developer out of the loop.

Exploring the effectiveness different types of motivations. Our studies re-

vealed different motivations to software security that vary in their degree of internal-

ization. Some companies use external motivations (e.g., rewards) to promote security.

However, previous research [141,142] found that they have a detrimental effect on in-

trinsic motivation as it shifts the perceived locus of causality from internal to external.

As a future research direction, the effectiveness of different types of motivations in

encouraging and improving security could be explored. In addition, we highlight the

need for future research focusing on the long-term effect of rewards (and punishment)

on intrinsic motivation and the internalization of software security.

Develop empirically-evaluated security best practices. Through our analy-

sis in Chapter 4, we found that available best practices fail to discuss the baseline

for ensuring security, or how to choose which best practices to follow based on lim-

ited resources and expertise. It was also interesting to find that most security best

practices are from industry sources and are not necessarily empirically verified. For

158

future research, we suggest devising a lightweight version of security best practices

and evaluating its benefit for teams that do not have enough resources to implement

security throughout the SDLC, or when implementing traditional security practices

would be too disruptive to their workflow.

7.5 Conclusion

This thesis challenges the position that software developers are the reason for security

issues. The findings herein assert that developers are not the weakest link. Through

this thesis, we have identified various factors that influence security processes and

motivation to address security. These factors include company culture towards secu-

rity, resources available to address security, external pressures (e.g., security audits),

experiencing a security incident, the development team’s division of labour style, and

the availability and usability of tools that identify software security issues. The de-

veloper’s security knowledge and access to security resources in the company are also

influential.

Focusing on the human dimension of software security, our main goal in this thesis

is to support developers through better understanding their motivations, attitudes,

and processes to handle security. We presented a visual analysis environment to sup-

port security code analysis while encouraging collaboration between developers and

reviewers. We investigated how security currently fits in the development lifecycle,

and identified discrepancies between existing practices and best practices in the lit-

erature. We then presented a taxonomy of opportunities through which developers

acquire security knowledge, and explored their motivations to software security. In

addition, we presented a human-oriented model that promotes the internalization of

security. This model highlights the crucial role that security knowledge opportunities

and collaboration between teams play in facilitating the internalization of security.

Bibliography

[1] AngularJS Developer Guide. https://docs.angularjs.org/guide/security.

[2] BSIMM. https://www.bsimm.com. [Accessed Feb-2017].

[3] CVE - Common Vulnerability Exposures. https://cve.mitre.org. [Accessed
Jan-2018].

[4] DEF CON Hacking Conference. https://www.defcon.org/index.html. [Ac-
cessed Jan-2018].

[5] FindBugs - Find Bugs in Java Programs. http://findbugs.sourceforge.net/
findbugs2.html. [Accessed June-2016].

[6] Google’s Approach to IT Security. https://static.googleusercontent.com/
media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-
security-whitepaper.pdf. [Accessed July-2016].

[7] Stack Overflow - Where Developers Learn, Share, & Build Careers. https:

//stackoverflow.com. [Accessed Jan-2018].

[8] Cyber security boost for UK firms. https://www.gov.uk/government/news/
cyber-security-boost-for-uk-firms, 2015. [Accessed May-2017].

[9] IT Health Check (ITHC): supporting guidance. https://www.gov.uk/
government/publications/it-health-check-ithc-supporting-

guidance/it-health-check-ithc-supporting-guidance, 2015. [Accessed
May-2017].

[10] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and C. Stran-
sky. Comparing the Usability of Cryptographic APIs. In Proceedings of the 38th
IEEE Symposium on Security and Privacy, 2017.

[11] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. You
Get Where You’re Looking for: The Impact of Information Sources on Code
Security. In 2016 IEEE Symposium on Security and Privacy (SP), pages 289–
305, May 2016.

[12] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. How
Internet Resources Might Be Helping You Develop Faster but Less Securely.
IEEE Security Privacy, 15(2):50–60, March 2017.

159

https://docs.angularjs.org/guide/security
https://www.bsimm.com
https://cve.mitre.org
https://www.defcon.org/index.html
http://findbugs.sourceforge.net/findbugs2.html
http://findbugs.sourceforge.net/findbugs2.html
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://stackoverflow.com
https://stackoverflow.com
https://www.gov.uk/government/news/cyber-security-boost-for-uk-firms
https://www.gov.uk/government/news/cyber-security-boost-for-uk-firms
https://www.gov.uk/government/publications/it-health-check-ithc-supporting-guidance/it-health-check-ithc-supporting-guidance
https://www.gov.uk/government/publications/it-health-check-ithc-supporting-guidance/it-health-check-ithc-supporting-guidance
https://www.gov.uk/government/publications/it-health-check-ithc-supporting-guidance/it-health-check-ithc-supporting-guidance

160

[13] Y. Acar, S. Fahl, and M. L. Mazurek. You are Not Your Developer, Either: A
Research Agenda for Usable Security and Privacy Research Beyond End Users.
In 2016 IEEE Cybersecurity Development (SecDev), pages 3–8, November 2016.

[14] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl. Devel-
opers Need Support, Too: A Survey of Security Advice for Software Developers.
In Cybersecurity Development (SecDev), 2017 IEEE, pages 22–26. IEEE, 2017.

[15] K. Alfert and A. Fronk. Manipulation of 3-dimensional visualization of Java
class relations. In Proceedings of the 6th World Conference on Integrated Design
Process Technology. Society for Design and Process Science, 2002.

[16] K. Allendoerfer, S. Aluker, G. Panjwani, J. Proctor, D. Sturtz, M. Vukovic,
and C. Chen. Adapting the cognitive walkthrough method to assess the usabil-
ity of a knowledge domain visualization. In IEEE Symposium on Information
Visualization, INFOVIS ’05, pages 195–202, Oct.

[17] P. Anderson. Measuring the Value of Static-Analysis Tool Deployments. Secu-
rity Privacy, IEEE, 10(3):40–47, May 2012.

[18] C. Anslow, S. Marshall, J. Noble, and R. Biddle. SourceVis: Collaborative soft-
ware visualization for co-located environments. In IEEE Working Conference
on Software Visualization, VISSOFT ’13, pages 1–10, Sept 2013.

[19] H. Assal and S. Chiasson. Motivations and Amotivations for Software Security.
In SOUPS Workshop on Security Information Workers (WSIW). USENIX As-
sociation, 2018.

[20] H. Assal and S. Chiasson. Security in the Software Development Lifecycle. In
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), Balti-
more, MD, 2018. USENIX Association.

[21] H. Assal, S. Chiasson, and R. Biddle. Cesar: Visual representation of source
code vulnerabilities. In 2016 IEEE Symposium on Visualization for Cyber Se-
curity (VizSec), pages 1–8, Oct 2016.

[22] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using
Static Analysis to Find Bugs. IEEE Software, 25(5):22–29, Sept 2008.

[23] N. Ayewah and W. Pugh. The Google FindBugs Fixit. In International Sympo-
sium on Software Testing and Analysis, ISSTA ’10, pages 241–252, New York,
NY, USA, 2010.

[24] B. K. Marshall. Passwords Found in the Wild for January 2013. http://

blog.passwordresearch.com/2013/02/. [Accessed April-2017].

http://blog.passwordresearch.com/2013/02/
http://blog.passwordresearch.com/2013/02/

161

[25] B. Schneier. Security Risks of Embedded Systems. https://www.schneier.com/
blog/archives/2014/01/security risks 9.html, January 2014. [Accessed
May-2017].

[26] D. Baca, M. Boldt, B. Carlsson, and A. Jacobsson. A Novel Security-Enhanced
Agile Software Development Process Applied in an Industrial Setting. In 2015
10th International Conference on Availability, Reliability and Security, pages
11–19, Aug 2015.

[27] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg. Static Code Analysis to
Detect Software Security Vulnerabilities - Does Experience Matter? In 2009
International Conference on Availability, Reliability and Security, pages 804–
810, March 2009.

[28] A. Bacchelli and C. Bird. Expectations, Outcomes, and Challenges of Modern
Code Review. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 712–721, Piscataway, NJ, USA, 2013. IEEE Press.

[29] R. Balebako and L. Cranor. Improving App Privacy: Nudging App Developers
to Protect User Privacy. IEEE Security Privacy, 12(4):55–58, July 2014.

[30] R. Balebako, A. Marsh, J. Lin, J. Hong, and L. F. Cranor. The Privacy and
Security Behaviors of Smartphone App Developers. In Workshop on Usable
Security (USEC), 10.14722/usec.2014.23 006, 2014. Internet Society.

[31] S. Bartsch. Practitioners’ Perspectives on Security in Agile Development. In
2011 Sixth International Conference on Availability, Reliability and Security,
pages 479–484, Aug 2011.

[32] G. G. Bear, J. C. Slaughter, L. S. Mantz, and E. Farley-Ripple. Rewards, praise,
and punitive consequences: Relations with intrinsic and extrinsic motivation.
Teaching and Teacher Education, 65(Complete):10–20, 2017.

[33] R. A. Becker and W. S. Cleveland. Brushing Scatterplots. Technometrics,
29(2):127–142, 1987.

[34] G. Berisha and J. Shiroka Pula. Defining Small and Medium Enterprises: A
Critical Review. Academic Journal of Business, Administration, Law and Social
Sciences, 1, 2015.

[35] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler. A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World. Commun. ACM, 53(2):66–75,
February 2010.

https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html

162

[36] A. Blackwell and T. Green. A Cognitive Dimensions questionnaire optimised
for users. In Annual Meeting of the Psychology of Programming Interest Group,
pages 137–152, 2000.

[37] A. Blackwell and T. Green. Notational systems–the cognitive dimensions of
notations framework. In HCI Models, Theories, and Frameworks: Toward an
Interdisciplinary Science. Morgan Kaufmann, 2003.

[38] CERT and CMU. Cybersecurity Engineering. https://www.cert.org/
cybersecurity-engineering/. [Accessed Feb-2017].

[39] B. Chess and G. McGraw. Static Analysis for Security. IEEE Security &
Privacy, 2(6):76–79, 2004.

[40] S. Chiasson, P. C. van Oorschot, and R. Biddle. Even experts deserve us-
able security: Design guidelines for security management systems. In SOUPS
Workshop on Usable IT Security Management (USM), pages 1–4, 2007.

[41] Codenomicon. The Heartbleed Bug. http://heartbleed.com. [Accessed June-
2016].

[42] J. S. Collofello and S. N. Woodfield. Evaluating the effectiveness of reliability-
assurance techniques. Journal of Systems and Software, 9(3):191–195, 1989.

[43] J. M. Corbin and A. L. Strauss. Basics of qualitative research: techniques and
procedures for developing grounded theory. Sage Publications, Inc, Los Angeles,
Calif, 3rd edition, 2008.

[44] L. F. Cranor and S. Garfinkel. Security and usability: designing secure systems
that people can use. O’Reilly Media, Inc., 2005.

[45] CTFtime. CTF? WTF? https://ctftime.org/ctf-wtf/. [Accessed Jan-
2018].

[46] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang.
Visualizing the Execution of Java Programs, pages 151–162. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[47] E. Deci and R. M. Ryan. Intrinsic Motivation and Self-Determination in Human
Behavior. Springer US, 1 edition, 1985.

[48] C. Z. Dib. Formal, nonformal and informal education: concepts/applicability.
AIP Conference Proceedings, 173(1):300–315, 1988.

[49] S. Diehl. Software visualization: visualizing the structure, behaviour, and evo-
lution of software. Springer Science & Business Media, New York;Berlin;, 2007.

https://www.cert.org/cybersecurity-engineering/
https://www.cert.org/cybersecurity-engineering/
http://heartbleed.com
https://ctftime.org/ctf-wtf/

163

[50] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow. Cluster
Analysis of Java Dependency Graphs. In Proceedings of the 4th ACM Sympo-
sium on Software Visualization, SoftVis ’08, pages 91–94, New York, NY, USA,
2008. ACM.

[51] D. A. Dillman. Mail and Internet Surveys: The tailored design method. John
Wiley & Sons, Inc., 2000.

[52] S. Elo and H. Kyngäs. The Qualitative Content Analysis Process. Journal of
Advanced Nursing, 62(1):107–115, 2008.

[53] Y. Engeström. Learning by expanding. Center for Activity Theory and Devel-
opmental Work Research, 1987.

[54] Y. Engeström. Expansive Learning at Work: Toward an activity theoretical
reconceptualization. Journal of Education and Work, 14(1):133–156, 2001.

[55] Y. Engeström, R. Miettinen, and R.-L. Punamäki. Perspectives on Activity
Theory. Cambridge University Press, 1999.

[56] M. Eraut. Non-formal learning and tacit knowledge in professional work. British
Journal of Educational Psychology, 70(1):113–136, 2000.

[57] H. Eshach. Bridging In-school and Out-of-school Learning: Formal, Non-
Formal, and Informal Education. Journal of Science Education and Technology,
16(2):171–190, Apr 2007.

[58] M. E. Fagan. Design and code inspections to reduce errors in program devel-
opment. IBM Systems Journal, 15(3):182–211, 1976.

[59] W. Fang, B. P. Miller, and J. A. Kupsch. Automated Tracing and Visualization
of Software Security Structure and Properties. In Proceedings of the Ninth
International Symposium on Visualization for Cyber Security, VizSec ’12, pages
9–16, New York, NY, USA, 2012. ACM.

[60] A. Field. Discovering statistics using IBM SPSS statistics. SAGE Publications
Ltd, 2013.

[61] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl.
Stack Overflow Considered Harmful? The Impact of Copy Paste on Android
Application Security. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 121–136, May 2017.

[62] J. Fonseca, M. Vieira, K. Buragga, and N. Zaman. A Survey on Secure Software
Development Lifecycles. Software Development Techniques for Constructive
Information Systems Design, pages 57–73, 2013.

164

[63] A. Forward and T. C. Lethbridge. A Taxonomy of Software Types to Facil-
itate Search and Evidence-based Software Engineering. In Proceedings of the
2008 Conference of the Center for Advanced Studies on Collaborative Research:
Meeting of Minds, CASCON ’08, pages 179–191, New York, NY, USA, 2008.
ACM.

[64] M. Gagné and E. L. Deci. Self-determination theory and work motivation.
Journal of Organizational Behavior, 26(4):331–362.

[65] S. Garfinkel and H. R. Lipford. Usable Security: History, Themes, and Chal-
lenges. Synthesis Lectures on Information Security, Privacy, and Trust, 5(2):1–
124, 2014.

[66] D. Geer. Are Companies Actually Using Secure Development Life Cycles? Com-
puter, 43(6):12–16, June 2010.

[67] B. G. Glaser and A. L. Strauss. The discovery of grounded theory: strategies
for qualitative research. Aldine, 1967.

[68] Gene V Glass, Percy D Peckham, and James R Sanders. Consequences of
failure to meet assumptions underlying the fixed effects analyses of variance
and covariance. Review of educational research, 42(3):237–288, 1972.

[69] J. Goodall, H. Radwan, and L. Halseth. Visual Analysis of Code Security. In
IEEE Symposium on Visualization for Cyber Security, VizSec ’10, pages 46–51,
New York, NY, USA, 2010.

[70] Government of Canada. SME Research and Statistics. http://www.ic.gc.ca/
eic/site/061.nsf/eng/Home, 2018. [Accessed June-2018].

[71] M. Green and M. Smith. Developers are Not the Enemy!: The Need for Usable
Security APIs. IEEE Security Privacy, 14(5):40–46, Sept 2016.

[72] A. Greenberg. Hackers Remotely Kill a Jeep on the Highway—With
Me in It. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/, 2015. [Accessed May-2017].

[73] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward
Large-Scale Vulnerability Discovery Using Machine Learning. In Proceedings
of the Sixth ACM Conference on Data and Application Security and Privacy,
CODASPY ’16, pages 85–96, New York, NY, USA, 2016. ACM.

[74] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and Implantable
Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses. In
2008 IEEE Symposium on Security and Privacy (SP 2008), pages 129–142,
May 2008.

http://www.ic.gc.ca/eic/site/061.nsf/eng/Home
http://www.ic.gc.ca/eic/site/061.nsf/eng/Home
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

165

[75] M. Harbach, M. Hettig, S. Weber, and M. Smith. Using Personal Examples to
Improve Risk Communication for Security & Privacy Decisions. In Proceedings
of the 32nd Annual ACM Conference on Human Factors in Computing Systems,
CHI ’14, pages 2647–2656, New York, NY, USA, 2014. ACM.

[76] C. Herley and P. C. v. Oorschot. SoK: Science, Security and the Elusive Goal
of Security as a Scientific Pursuit. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 99–120, May 2017.

[77] M. Howard and S. Lipner. The security development lifecycle: SDL, a process
for developing demonstrably more secure software. Microsoft Press, Redmond,
Wash, 2006.

[78] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing
Web Application Code by Static Analysis and Runtime Protection. In Pro-
ceedings of the 13th International Conference on World Wide Web, WWW ’04,
pages 40–52, New York, NY, USA, 2004. ACM.

[79] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t software de-
velopers use static analysis tools to find bugs? In 35th International Conference
on Software Engineering (ICSE), pages 672–681, May 2013.

[80] E. E. Jones. Content analysis for the social sciences and humanities. Psyccri-
tiques, 14(11):615–616, 1969.

[81] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting
Web application vulnerabilities. In 2006 IEEE Symposium on Security and
Privacy (S P’06), May 2006.

[82] K. R. Laughery Jr. and K. R. Laughery Sr. Human factors in software engi-
neering: A review of the literature. Journal of Systems and Software, 5(1):3–14,
1985.

[83] H. F. Kaiser. A Second Generation Little Jiffy. Psychometrika, 35(4):401–415,
Dec 1970.

[84] H. F. Kaiser and J. Rice. Little Jiffy, Mark IV. Educational and Psychological
Measurement, 34(1):111–117, 1974.

[85] Karen Grace-Martin. Can Likert Scale Data ever be Continuous?
https://www.theanalysisfactor.com/can-likert-scale-data-ever-
be-continuous/. [Accessed Aug-2018].

[86] R. Kissel, K. M. Stine, M. A. Scholl, H. Rossman, J. Fahlsing, and J. Gulick.
Security considerations in the system development life cycle. NIST, 2008.

https://www.theanalysisfactor.com/can-likert-scale-data-ever-be-continuous/
https://www.theanalysisfactor.com/can-likert-scale-data-ever-be-continuous/

166

[87] R. L. Kissel. NIST Interagency/Internal Report (NISTIR) - 7298rev2.
https://www.nist.gov/publications/glossary-key-information-
security-terms-1. [Accessed May-2018].

[88] K. Krippendorff. Estimating the reliability, systematic error and random error
of interval data. Educational and Psychological Measurement, 30(1):61–70, 1970.

[89] K. Krippendorff. Testing the reliability of content analysis data. The content
analysis reader, pages 350–357, 2009.

[90] K. Kuutti. Activity theory as a potential framework for human-computer in-
teraction research. Context and consciousness: Activity theory and human-
computer interaction, 1744, 1996.

[91] T. D. LaToza and B. A. Myers. On the Importance of Understanding the
Strategies That Developers Use. In Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE ’10, pages
72–75, New York, NY, USA, 2010. ACM.

[92] L. Layman, L. Williams, and R. St. Amant. Toward Reducing Fault Fix Time:
Understanding Developer Behavior for the Design of Automated Fault Detec-
tion Tools. In Empirical Software Engineering and Measurement, 2007. ESEM
2007. First International Symposium on, pages 176–185, Sept 2007.

[93] J. Lazar, J. H. Feng, and H. Hochheiser. Research methods in human-computer
interaction. John Wiley, Hoboken, NJ, 2010.

[94] T. C. Lethbridge and R. Laganière. Object-oriented software engineering: prac-
tical software development using UML and Java. McGraw-Hill Education, 2nd
edition, 2005.

[95] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead. Does
bug prediction support human developers? Findings from a Google case study.
In 35th International Conference on Software Engineering (ICSE), ICSE ’13,
pages 372–381, May 2013.

[96] H. Lipford, T. Thomas, B. Chu, and E. Murphy-Hill. Interactive Code Anno-
tation for Security Vulnerability Detection. In Proceedings of the 2014 ACM
Workshop on Security Information Workers, SIW ’14, pages 17–22, New York,
NY, USA, 2014. ACM.

[97] Gitta H Lubke and Bengt O Muthén. Applying multigroup confirmatory factor
models for continuous outcomes to likert scale data complicates meaningful
group comparisons. Structural equation modeling, 11(4):514–534, 2004.

https://www.nist.gov/publications/glossary-key-information-security-terms-1
https://www.nist.gov/publications/glossary-key-information-security-terms-1

167

[98] M. van Zadelhoff. Cybersecurity Has a Serious Talent Shortage. Here’s How to
Fix It. https://hbr.org/2017/05/cybersecurity-has-a-serious-talent-
shortage-heres-how-to-fix-it. [Accessed Jan-2018].

[99] R. C. Martin. Agile software development: principles, patterns, and practices.
Prentice Hall, 2002.

[100] G. McGraw. Software security: building security in. Addison-Wesley, Upper
Saddle River, NJ, 2006.

[101] G. McGraw. Seven Myths of Software Security Best Practices.
http://searchsecurity.techtarget.com/opinion/McGraw-Seven-myths-
of-software-security-best-practices, 2015. [Accessed Feb-2017].

[102] S. Mckenna, D. Staheli, and M. Meyer. Unlocking user-centered design methods
for building cyber security visualizations. In IEEE Symposium on Visualization
for Cyber Security, VizSec ’15, pages 1–8, Oct 2015.

[103] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz.
The Work Life of Developers: Activities, Switches and Perceived Productivity.
IEEE Transactions on Software Engineering, PP(99):1–1, 2017.

[104] Microsoft Corp. Microsoft Security Development Lifecycle. https://

www.microsoft.com/en-us/sdl. [Accessed June-2016].

[105] Microsoft Corp. Necessary, Explained, Actionable, and Tested (NEAT)
Cards. https://cloudblogs.microsoft.com/microsoftsecure/2012/10/09/
necessary-explained-actionable-and-tested-neat-cards/. [Accessed
Aug-2018].

[106] J. Mifsud. 12 Effective Guidelines For Breadcrumb Usability and SEO.
http://usabilitygeek.com/12-effective-guidelines-for-breadcrumb-
usability-and-seo/. [Accessed June-2016].

[107] R. Millman. Nearly 1500 vulnerabilities found in automated medical equip-
ment. https://www.scmagazineuk.com/nearly-1500-vulnerabilities-
found-in-automated-medical-equipment/article/531672/, 2016. [Ac-
cessed Feb-2017].

[108] P. Morrison. A Security Practices Evaluation Framework. In Proceedings of
the 37th International Conference on Software Engineering, ICSE ’15, pages
935–938, Piscataway, NJ, USA, 2015. IEEE Press.

[109] S. Müller, M. Würsch, T. Fritz, and H. C. Gall. An Approach for Collaborative
Code Reviews Using Multi-touch Technology. In International Workshop on
Co-operative and Human Aspects of Software Engineering, CHASE ’12, pages
93–99, Piscataway, NJ, USA, 2012.

https://hbr.org/2017/05/cybersecurity-has-a-serious-talent-shortage-heres-how-to-fix-it
https://hbr.org/2017/05/cybersecurity-has-a-serious-talent-shortage-heres-how-to-fix-it
http://searchsecurity.techtarget.com/opinion/McGraw-Seven-myths-of-software-security-best-practices
http://searchsecurity.techtarget.com/opinion/McGraw-Seven-myths-of-software-security-best-practices
https://www.microsoft.com/en-us/sdl
https://www.microsoft.com/en-us/sdl
https://cloudblogs.microsoft.com/microsoftsecure/2012/10/09/necessary-explained-actionable-and-tested-neat-cards/
https://cloudblogs.microsoft.com/microsoftsecure/2012/10/09/necessary-explained-actionable-and-tested-neat-cards/
http://usabilitygeek.com/12-effective-guidelines-for-breadcrumb-usability-and-seo/
http://usabilitygeek.com/12-effective-guidelines-for-breadcrumb-usability-and-seo/
https://www.scmagazineuk.com/nearly-1500-vulnerabilities-found-in-automated-medical-equipment/article/531672/
https://www.scmagazineuk.com/nearly-1500-vulnerabilities-found-in-automated-medical-equipment/article/531672/

168

[110] T. Nafees, N. Coull, I. Ferguson, and A. Sampson. Vulnerability Anti-Pattern:
A Timeless Way to Capture Poor Software Practices (Vulnerabilities). In Pat-
tern Languages of Programs Conference, 2017.

[111] T. Nafees, N. Coull, R. I. Ferguson, and A. Sampson. Idea-Caution Before
Exploitation: The Use of Cybersecurity Domain Knowledge to Educate Soft-
ware Engineers Against Software Vulnerabilities. In E. Bodden, M. Payer, and
E. Athanasopoulos, editors, Engineering Secure Software and Systems, pages
133–142, Cham, 2017. Springer International Publishing.

[112] B. A. Nardi. Studying context: A comparison of activity theory, situated action
models, and distributed cognition. Context and consciousness: Activity theory
and human-computer interaction, 69102, 1996.

[113] NASA. Software Assurance Guidebook, NASA-GB-A201. https://

www.hq.nasa.gov/office/codeq/doctree/nasa gb a201.pdf, 2002. [Accessed
Feb-2017].

[114] National Vulnerabiliy Database. NVD statistics results. https://

web.nvd.nist.gov/view/vuln/statistics. [Accessed March-2017].

[115] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl. A Stitch
in Time: Supporting Android Developers in WritingSecure Code. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 1065–1077, New York, NY, USA, 2017. ACM.

[116] NIST. National Vulnerability Database. https://nvd.nist.gov. [Accessed
March-2017].

[117] K. O’Connor. Activity Theory. American Cancer Society, 2015.

[118] V. Okun, A. Delaitre, and P. E. Black. Report on the Static Analysis Tool
Exposition (SATE) IV. In NIST Special Publication 500-297. 2013.

[119] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh, J. Cappos, and Y. Zhuang.
It’s the Psychology Stupid: How Heuristics Explain Software Vulnerabilities
and How Priming Can Illuminate Developer’s Blind Spots. In Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC ’14, pages
296–305, New York, NY, USA, 2014. ACM.

[120] Organisation for Economic Co-operation and Development (OECD).
Recognition of Non-formal and Informal Learning - Home. http:

//www.oecd.org/edu/skills-beyond-school/recognitionofnon-
formalandinformallearning-home.htm. [Accessed Jan-2018].

[121] OWASP. CLASP. https://www.owasp.org/index.php/CLASP. [Accessed Feb-
2017].

https://www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a201.pdf
https://www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a201.pdf
https://web.nvd.nist.gov/view/vuln/statistics
https://web.nvd.nist.gov/view/vuln/statistics
https://nvd.nist.gov
http://www.oecd.org/edu/skills-beyond-school/recognitionofnon-formalandinformallearning-home.htm
http://www.oecd.org/edu/skills-beyond-school/recognitionofnon-formalandinformallearning-home.htm
http://www.oecd.org/edu/skills-beyond-school/recognitionofnon-formalandinformallearning-home.htm
https://www.owasp.org/index.php/CLASP

169

[122] OWASP. OWASP CTF Project. https://www.owasp.org/index.php/
Category:OWASP CTF Project. [Accessed Jan-2018].

[123] OWASP. OWASP Guide Project. https://www.owasp.org/index.php/
Category:OWASP Guide Project. [Accessed Feb-2017].

[124] OWASP. OWASP SAMM Project. https://www.owasp.org/index.php/
OWASP SAMM Project. [Accessed Feb-2017].

[125] OWASP. OWASP Testing Project. https://www.owasp.org/index.php/
OWASP Testing Project. [Accessed Feb-2017].

[126] OWASP. OWASP Secure Coding Practices Checklist. https://www.owasp.org/
index.php/OWASP Secure Coding Practices Checklist, January 2016. [Ac-
cessed June-2018].

[127] OWASP. Static Code Analysis. https://www.owasp.org/index.php/
Static Code Analysis, 2017. [Accessed May-2017].

[128] T. Panas, Rüdiger Lincke, and Welf Löwe. Online-configuration of Software
Visualizations with Vizz3D. In Proceedings of the 2005 ACM Symposium on
Software Visualization, SoftVis ’05, pages 173–182, New York, NY, USA, 2005.
ACM.

[129] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol. Would static
analysis tools help developers with code reviews? In 2015 IEEE 22nd In-
ternational Conference on Software Analysis, Evolution, and Reengineering
(SANER), pages 161–170, March 2015.

[130] B. D. Payne and W. K. Edwards. A Brief Introduction to Usable Security.
IEEE Internet Computing, 12(3):13–21, May 2008.

[131] H. Perl, S. Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi, Konrad
Rieck, Sascha Fahl, and Yasemin Acar. VCCFinder: Finding Potential Vulner-
abilities in Open-Source Projects to Assist Code Audits. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 426–437, New York, NY, USA, 2015. ACM.

[132] O. Pieczul, S. Foley, and M. E. Zurko. Developer-centered Security and the
Symmetry of Ignorance. In Proceedings of the 2017 New Security Paradigms
Workshop, NSPW 2017, pages 46–56, New York, NY, USA, 2017. ACM.

[133] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda. Can
Security Become a Routine?: A Study of Organizational Change in an Agile
Software Development Group. In Proceedings of the 2017 ACM Conference
on Computer Supported Cooperative Work and Social Computing, CSCW ’17,
pages 2489–2503, New York, NY, USA, 2017. ACM.

https://www.owasp.org/index.php/Category:OWASP_CTF_Project
https://www.owasp.org/index.php/Category:OWASP_CTF_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist
https://www.owasp.org/index.php/Static_Code_Analysis
https://www.owasp.org/index.php/Static_Code_Analysis

170

[134] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton. Cognitive walkthroughs:
a method for theory-based evaluation of user interfaces. International Journal
of Man-Machine Studies, 36(5):741–773, 1992.

[135] J. Radcliffe. Hacking Medical Devices for Fun and Insulin: Breaking the Hu-
man SCADA System. https://media.blackhat.com/bh-us-11/Radcliffe/
BH US 11 Radcliffe Hacking Medical Devices WP.pdf, 2011. [Accessed Feb-
2017].

[136] Rapid 7 Community. #IoTsec Disclosure: 10 New Vulnerabilities for Sev-
eral Video Baby Monitors. https://community.rapid7.com/community/
infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-

several-video-baby-monitors, 2015. [Accessed Feb-2017].

[137] J. Ratner. Human factors and Web development. CRC Press, 2003.

[138] S. P. Reiss. Dyvise: Performance analysis of production systems. In In Proceed-
ings of the International Conference on Software Engineering (ICSE)(2009),
IEEE Computer, 2009.

[139] H.-S. Rhee, Y. U. Ryu, and C.-T. Kim. Unrealistic optimism on information
security management. Computers & Security, 31(2):221–232, 2012.

[140] N. B. Ruparelia. Software development lifecycle models. SIGSOFT Software
Engineering Notes, 35(3):8–13, May 2010.

[141] R. M. Ryan and E. L. Deci. Self-determination theory and the facilitation of in-
trinsic motivation, social development, and well-being. American Psychologist,
55(1):68, 2000.

[142] R. M. Ryan and E. L. Deci. Self-determination theory: Basic psychological
needs in motivation, development, and wellness. Guilford Publications, 2017.

[143] S. Streichsbier. Improve Web Application Security with Frameworks: A case
study. http://www.vantagepoint.sg/blog/18-improve-web-application-
security-with-frameworks-a-case-study. [Accessed Feb-2017].

[144] R. Sass. How to Balance Between Security and Agile Development the Right
Way. https://resources.whitesourcesoftware.com/blog-whitesource/
how-to-balance-between-security-and-agile-development-the-right-

way, 2016. [Accessed May-2018].

[145] R. Seacord. Top 10 secure coding practices. https://

www.securecoding.cert.org/confluence/display/seccode/Top+10+
Secure+Coding+Practices, 2011. [Accessed Feb-2017].

https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://community.rapid7.com/community/infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors
https://community.rapid7.com/community/infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors
https://community.rapid7.com/community/infosec/blog/2015/09/02/iotsec-disclosure-10-new-vulns-for-several-video-baby-monitors
http://www.vantagepoint.sg/blog/18-improve-web-application-security-with-frameworks-a-case-study
http://www.vantagepoint.sg/blog/18-improve-web-application-security-with-frameworks-a-case-study
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-balance-between-security-and-agile-development-the-right-way
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-balance-between-security-and-agile-development-the-right-way
https://resources.whitesourcesoftware.com/blog-whitesource/how-to-balance-between-security-and-agile-development-the-right-way
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

171

[146] M. Selart, T. Nordström, B. Kuvaas, and K. Takemura. Effects of Reward on
Selfregulation, Intrinsic Motivation and Creativity. Scandinavian Journal of
Educational Research, 52(5):439–458, 2008.

[147] G. Sevitsky, W. De Pauw, and R. Konuru. An information exploration tool for
performance analysis of Java programs. In Proceedings Technology of Object-
Oriented Languages and Systems. TOOLS 38, pages 85–101, 2001.

[148] B. Shneiderman. Tree Visualization with Tree-maps: 2-D Space-filling Ap-
proach. ACM Transactions on Graphics (TOG), 11(1):92–99, January 1992.

[149] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. Questions
Developers Ask While Diagnosing Potential Security Vulnerabilities with Static
Analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 248–259, New York, NY, USA,
2015. ACM.

[150] J. Smith, B. Johnson, E. Murphy-Hill, B. T. Chu, and H. Richter. How Devel-
opers Diagnose Potential Security Vulnerabilities with a Static Analysis Tool.
IEEE Transactions on Software Engineering, pages 1–1, 2018.

[151] J. Snow. On the mode of communication of cholera. John Churchill, 1855.

[152] I. Sommerville. Software engineering. Pearson, Boston, 9th edition, 2011.

[153] J. Sophy. 43 Percent of Cyber Attacks Target Small Business.
https://smallbiztrends.com/2016/04/cyber-attacks-target-small-
business.html, 2016. [Accessed Feb-2017].

[154] G. Stahl. Conceptualizing the Intersubjective Group. International Journal of
Computer-Supported Collaborative Learning, 10(3):209–217, Sep 2015.

[155] M. Stanislav. R7-2015-27 and R7-2015-24: Fisher-Price Smart Toy & hereO
GPS Platform Vulnerabilities (FIXED). https://community.rapid7.com/
community/infosec/blog/2016/02/02/security-vulnerabilities-

within-fisher-price-smart-toy-hereo-gps-platform, 2016. [Accessed
Feb-2017].

[156] J. P. Stevens. Applied multivariate statistics for the social sciences. New Jersey:
Lawrance Erlbaum Association, 2002.

[157] G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide for Infor-
mation Technology Systems. https://csrc.nist.gov/publications/detail/
sp/800-30/archive/2002-07-01. [Accessed May-2018].

https://smallbiztrends.com/2016/04/cyber-attacks-target-small-business.html
https://smallbiztrends.com/2016/04/cyber-attacks-target-small-business.html
https://community.rapid7.com/community/infosec/blog/2016/02/02/security-vulnerabilities-within-fisher-price-smart-toy-hereo-gps-platform
https://community.rapid7.com/community/infosec/blog/2016/02/02/security-vulnerabilities-within-fisher-price-smart-toy-hereo-gps-platform
https://community.rapid7.com/community/infosec/blog/2016/02/02/security-vulnerabilities-within-fisher-price-smart-toy-hereo-gps-platform
https://csrc.nist.gov/publications/detail/sp/800-30/archive/2002-07-01
https://csrc.nist.gov/publications/detail/sp/800-30/archive/2002-07-01

172

[158] C. Stransky, Y. Acar, D. C. Nguyen, D. Wermke, D. Kim, E. M. Redmiles,
M. Backes, S. Garfinkel, M. L. Mazurek, and S. Fahl. Lessons Learned from
Using an Online Platform to Conduct Large-Scale, Online Controlled Security
Experiments with Software Developers. In 10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17), Vancouver, BC, 2017. USENIX
Association.

[159] A. L. Strauss and J. M. Corbin. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. Sage Publications, Inc., 2 edition,
1998.

[160] Symantec Security Response. ShellShock: All you need to know about the Bash
Bug vulnerability. http://www.symantec.com/connect/blogs/shellshock-
all-you-need-know-about-bash-bug-vulnerability, 2014. [Accessed June-
2016].

[161] T. D. Harmon. Cyber Security Capture The Flag (CTF): What Is
It? https://blogs.cisco.com/perspectives/cyber-security-capture-
the-flag-ctf-what-is-it. [Accessed Jan-2018].

[162] A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers. Extraction and visualiza-
tion of call dependencies for large C/C++ code bases: A comparative study.
In 2009 5th IEEE International Workshop on Visualizing Software for Under-
standing and Analysis, pages 81–88, Sept 2009.

[163] T. Thomas, B. Chu, H. Lipford, J. Smith, and E. Murphy-Hill. A study of
interactive code annotation for access control vulnerabilities. In 2015 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
pages 73–77, Oct 2015.

[164] T. W. Thomas, H. Lipford, B. Chu, J. Smith, and E. Murphy-Hill. What
questions remain? an examination of how developers understand an interactive
static analysis tool. In Twelfth Symposium on Usable Privacy and Security
(SOUPS 2016), Denver, CO, 2016. USENIX Association.

[165] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford. Security During Applica-
tion Development: An Application Security Expert Perspective. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, CHI
’18, pages 262:1–262:12, New York, NY, USA, 2018. ACM.

[166] I. A. Tondel, M. G. Jaatun, and P. H. Meland. Security Requirements for the
Rest of Us: A Survey. IEEE Software, 25(1):20–27, Jan 2008.

[167] M. A. Tremblay, C. M. Blanchard, S. Taylor, L. G. Pelletier, and M. Villeneuve.
Work Extrinsic and Intrinsic Motivation Scale: Its value for organizational psy-
chology research. Canadian Journal of Behavioural Science/Revue canadienne
des sciences du comportement, 41(4):213, 2009.

http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it

173

[168] O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin. ALETHEIA: Improving the
Usability of Static Security Analysis. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 762–
774, New York, NY, USA, 2014. ACM.

[169] S. Türpe. Idea: Usable Platforms for Secure Programming – Mining Unix for
Insight and Guidelines. In J. Caballero, E. Bodden, and E. Athanasopoulos,
editors, Engineering Secure Software and Systems, pages 207–215, Cham, 2016.
Springer International Publishing.

[170] R. J. Vallerand and R. Blssonnette. Intrinsic, Extrinsic, and Amotivational
Styles as Predictors of Behavior: A Prospective Study. Journal of Personality,
60(3):599–620.

[171] N. D. Weinstein and W. M. Klein. Unrealistic Optimism: Present and Future.
Journal of Social and Clinical Psychology, 15(1):1–8, 2017/08/12 1996.

[172] C. Weir, A. Rashid, and J. Noble. I’d Like to Have an Argument, Please: Using
Dialectic for Effective App Security. The 2nd European Workshop on Usable
Security (EuroUSEC 2017), 2017.

[173] C. Wharton, J. Rieman, C. Lewis, and P. Polson. Usability Inspection Methods.
chapter The Cognitive Walkthrough Method: A Practitioner’s Guide, pages
105–140. John Wiley & Sons, Inc., New York, NY, USA, 1994.

[174] A. Whitten and J. D. Tygar. Why Johnny Can’t Encrypt: A Usability Evalu-
ation of PGP 5.0. In USENIX Security Symposium, volume 348, 1999.

[175] J. Witschey, S. Xiao, and E. Murphy-Hill. Technical and Personal Factors
Influencing Developers’ Adoption of Security Tools. In Proceedings of the 2014
ACM Workshop on Security Information Workers, SIW ’14, pages 23–26. ACM,
2014.

[176] C. Woody. Strengthening Ties Between Process and Security.
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/
strengthening-ties-between-process-and-security#touch, 2013. [Ac-
cessed Feb-2017].

[177] I. M.Y. Woon and A. Kankanhalli. Investigation of IS professionals’ intention to
practise secure development of applications. International Journal of Human-
Computer Studies, 65(1):29–41, 2007.

[178] G. Wurster and P. C. van Oorschot. The Developer is the Enemy. In Proceedings
of the 2008 New Security Paradigms Workshop, NSPW ’08, pages 89–97, New
York, NY, USA, 2008. ACM.

https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/strengthening-ties-between-process-and-security#touch
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/strengthening-ties-between-process-and-security#touch

174

[179] S. Xiao, J. Witschey, and E. Murphy-Hill. Social Influences on Secure Devel-
opment Tool Adoption: Why Security Tools Spread. In Proceedings of the 17th
ACM Conference on Computer Supported Cooperative Work & Social Comput-
ing, CSCW ’14, pages 1095–1106, New York, NY, USA, 2014. ACM.

[180] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton. ASIDE: IDE Support for Web
Application Security. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11, pages 267–276, New York, NY, USA,
2011. ACM.

[181] J. Xie, H. Lipford, and B.-T. Chu. Evaluating Interactive Support for Secure
Programming. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’12, pages 2707–2716, New York, NY, USA, 2012.
ACM.

[182] J. Xie, H. R. Lipford, and B. Chu. Why do programmers make security errors?
In 2011 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 161–164, Sept 2011.

[183] F. Yamaguchi, F. Lindner, and K. Rieck. Vulnerability Extrapolation: Assisted
Discovery of Vulnerabilities Using Machine Learning. In Proceedings of the
5th USENIX Conference on Offensive Technologies, WOOT’11, pages 13–13,
Berkeley, CA, USA, 2011. USENIX Association.

[184] Y. Ye and K. Kishida. Toward an Understanding of the Motivation Open Source
Software Developers. In Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, pages 419–429, Washington, DC, USA, 2003.
IEEE Computer Society.

[185] H. Zhong and Z. Su. An Empirical Study on Real Bug Fixes. In International
Conference on Software Engineering, ICSE ’15, pages 913–923, Piscataway, NJ,
USA, 2015.

Appendix A

Interview Script

The following questions represent the main themes discussed during the interviews.

We may have probed for more details depending on participants’ responses.

• What type of development do you do?

• What are your main priorities when doing development? (In order of priority)

• Do your priorities change when a deadline approaches?

• What about security? Is it something you worry about?

• Which are the best methods in your opinion for ensuring the security of software

applications?

• How does security fit in your priorities?

• Which resources do you use to gain security knowledge?

• Do you get training (formal, or self-learning) to gain better knowledge of soft-

ware security? How often?

• Which software security best practices are you familiar with?

• Are there any obligations by your supervisor/employer for performing security

testing?

• What methods do you use to try to ensure the security of applications?

• Do you perform testing on your (or someone else’s) applications/code?

• Do you perform code reviews?

175

176

• How would you describe the relation between the development and the testing

team?

• Can you think of a story of security issue that was frustrating and how you

dealt with it?

Appendix B

Motivations and Amotivations for Software Security

177

178

T
ab

le
B

.1
:

M
ot

iv
at

io
n
s

an
d

A
m

ot
iv

at
io

n
s

of
so

ft
w

ar
e

se
cu

ri
ty

C
o
d
e

D
e
sc

r
ip
t
io
n

E
x
a
m
p
l
e
Q
u
o
t
e

A
m

ot
iv

at
io

n
-

F
el

t
la

ck
of

co
m

p
et

en
ce

L
ac

k
of

re
so

u
rc

es

T
h
e

sh
or

ta
ge

in

re
so

u
rc

es
,

e.
g.

,
b
u
d
ge

t

an
d

h
u
m

an
p

ow
er

,

n
ee

d
ed

to
p

er
fo

rm

se
cu

ri
ty

ta
sk

s

“W
e

do
n’

t
ha

ve
th

at
m

u
ch

m
an

po
w

er
to

ex
pl

ic
it

ly
te

st
se

cu
ri

ty
vu

ln
er

ab
il

it
ie

s,
[.

.]
w

e

do
n’

t
ha

ve
th

os
e

ki
n

d
of

re
so

u
rc

es
.

B
u

t
id

ea
ll

y
if

w
e

di
d

ha
ve

[a
bi

g]
co

m
pa

n
y

si
ze

,
I

w
ou

ld
ha

ve
a

te
am

de
di

ca
te

d
to

fi
n

d
ex

pl
oi

ts
,

u
m

,
th

at
so

rt
a

th
in

g.
B

u
t

u
n

fo
rt

u
n

at
el

y

w
e

do
n’

t.
”

L
ac

k
of

su
p
p

or
t

T
h
e

in
ad

eq
u
at

e
se

cu
ri

ty

to
ol

s
an

d
p
ro

ce
ss

es
,

or

th
e

la
ck

th
er

eo
f

“W
e

do
n’

t
ha

ve
an

y
fo

rm
al

pr
oc

es
s

of
li

ke
a

co
de

re
vi

ew
,

si
tt

in
g

do
w

n
an

d
ta

lk
in

g

ab
ou

t
se

cu
ri

ty
ri

sk
s”

A
m

ot
iv

at
io

n
-

L
ac

k
of

in
te

re
st

,
re

le
va

n
ce

,
va

lu
e

N
ot

m
y

re
-

sp
on

si
b
il
it

y

S
ec

u
ri

ty
is

n
ot

p
ar

t
of

m
y

d
u
ti

es

“D
ev

el
op

er
s

ar
e

si
m

il
ar

to
m

e,
th

ey
do

n’
t

ca
re

th
at

m
u

ch
ab

ou
t

se
cu

ri
ty

or
it

’s
n

ot

pa
rt

of
th

ei
r

da
y

to
da

y
jo

b,
th

er
ef

or
e

th
ey

do
n’

t
pa

y
m

u
ch

at
te

n
ti

on
to

th
e

se
cu

ri
ty

as
pe

ct
of

th
e

co
de

.”

S
ec

u
ri

t y
is

h
an

d
le

d

el
se

w
h
er

e

S
ec

u
ri

ty
is

an
ot

h
er

en
ti

ty
’s

re
sp

on
si

b
il
it

y

“I
u

su
al

ly
do

n’
t

as
a

de
ve

lo
pe

r
go

to
th

e
ex

tr
em

e
of

te
st

in
g

vu
ln

er
ab

il
it

y
in

m
y

fe
at

u
re

,
th

at
’s

so
m

eo
n

e
el

se
’s

to
do

.”

co
n
ti

n
u
ed

..
.

179

..
.

co
n
ti

n
u
ed

C
o
d
e

D
e
sc

r
ip
t
io
n

E
x
a
m
p
l
e
Q
u
o
t
e

In
d
u
ce

d

p
as

si
ve

n
es

s

T
h
e

su
rr

ou
n
d
in

g

en
v
ir

on
m

en
t

ca
u
se

s

p
as

si
ve

n
es

s
to

w
ar

d
s

se
cu

ri
ty

“I
do

n’
t

re
al

ly
tr

u
st

th
em

[m
y

te
am

m
em

be
rs

]
to

ru
n

an
y

ki
n

d
of

li
ke

so
u

rc
e

co
de

sc
an

n
er

s
or

an
yt

hi
n

g
li

ke
th

at
.

I
kn

ow
I’

m
ce

rt
ai

n
ly

n
ot

go
in

g
to

.”

N
o

p
er

ce
iv

ed

lo
ss

T
h
e

la
ck

of

co
m

p
et

it
io

n
,

ex
p

ec
te

d

re
p

er
cu

ss
io

n
s,

an
d

lo
ss

“I
ca

n
in

tr
od

u
ce

a
bi

g
se

cu
ri

ty
is

su
e

an
d

I
de

fi
n

it
el

y
w

on
’t

be
bl

am
ed

th
at

m
u

ch
fo

r
it

”

N
o

p
er

ce
iv

ed

ri
sk

T
h
e

co
m

p
an

y
or

ap
p
li
ca

ti
on

ty
p

e
is

p
er

ce
iv

ed
as

n
ot

a

va
lu

ab
le

ta
rg

et
fo

r

at
ta

ck
s

“F
or

a
sm

al
l

co
m

pa
n

y,
n

ob
od

y
w

il
l

u
su

al
ly

at
ta

ck
or

co
m

pr
om

is
e

th
e

vu
ln

er
ab

il
it

ie
s

in
yo

u
r

sy
st

em
.

If
so

m
et

hi
n

g
re

al
ly

ba
d

ha
pp

en
s,

u
su

al
ly

,
yo

u
do

n’
t

re
al

ly
ge

t
en

ou
gh

[b
ad

]
re

pu
ta

ti
on

as
w

el
l.

”

C
om

p
et

in
g

p
ri

or
it

ie
s

O
th

er
ta

sk
s

co
m

p
et

e
fo

r

re
so

u
rc

es
an

d
ar

e

p
ri

or
it

iz
ed

ov
er

se
cu

ri
ty

“I
ha

ve
se

cu
ri

ty
is

su
es

th
at

ar
e

fr
u

st
ra

ti
n

g,
bu

t
I

ha
ve

n’
t

be
en

ab
le

to
de

al
w

it
h

th
em

ye
t.

[.
..

]
It

’s
n

ot
so

m
et

hi
n

g
th

at
w

e’
ve

be
en

ab
le

to
de

al
w

it
h

ye
t,

ju
st

ca
u

se
of

pr
io

ri
ti

es
w

it
h

ev
er

yt
hi

n
g

el
se

.”

co
n
ti

n
u
ed

..
.

180

..
.

co
n
ti

n
u
ed

C
o
d
e

D
e
sc

r
ip
t
io
n

E
x
a
m
p
l
e
Q
u
o
t
e

A
m

ot
iv

at
io

n
-

D
efi

an
ce

/R
es

is
ta

n
ce

to
in

fl
u
en

ce

In
fl
ex

ib
il
it

y

T
h
e

re
si

st
an

ce
to

n
ew

te
ch

n
ol

og
y

an
d

b
ei

n
g

se
t

in
on

e’
s

w
ay

“[
M

y
te

am
is

]
u

si
n

g
a

fr
am

ew
or

k
an

d
th

es
e

gu
ys

,
th

ey
u

se
d

th
e

fr
am

ew
or

k

in
co

rr
ec

tl
y,

th
ey

di
dn

’t
li

ke
ho

w
ce

rt
ai

n
pa

rt
of

th
is

co
di

n
g

fr
am

ew
or

k
w

or
ks

an
d

ha
s

be
en

de
si

gn
ed

,
so

th
ey

de
ci

de
d

to
do

th
in

gs
co

m
pl

et
el

y
di

ff
er

en
t

th
an

it
[.

..
]

A
n

d
I

am

su
re

it
’s

go
n

n
a

re
su

lt
in

a
se

cu
ri

ty
ri

sk
do

w
n

th
e

li
n

e.
”

E
x
tr

in
si

c
M

ot
iv

at
io

n
-

E
x
te

rn
al

A
u
d
it

fe
ar

T
h
e

p
re

se
n
ce

of
an

ov
er

se
ei

n
g

an
d

su
p

er
v
is

in
g

en
ti

ty

“O
n

e
of

th
e

m
ai

n
re

as
on

s
th

at
th

ey
di

d
[a

dd
re

ss
se

cu
ri

ty
]

w
as

au
di

ts
.

I
th

in
k

th
ey

ha
d

to
co

m
pl

y
w

it
h

ce
rt

ai
n

se
cu

ri
ty

re
gu

la
ti

on
st

an
da

rd
,

ba
si

ca
ll

y
ev

er
y

qu
ar

te
r

or
so

th
ey

’r
e

be
in

g
ch

ec
ke

d
fo

r
co

m
pl

ia
n

ce
,

th
er

ef
or

e
th

ey
ha

d
th

e
m

ak
e

su
re

th
e

au
di

to
rs

ca
n’

t
fi

n
d

an
y

is
su

e
du

ri
n

g
th

e
pe

n
et

ra
ti

on
te

st
.”

B
u
si

n
es

s

lo
ss

L
os

se
s

th
at

a
b
u
si

n
es

s

ca
n

in
cu

r,
e.

g.
,

lo
si

n
g

cu
st

om
er

s,
d
u
e

to

se
cu

ri
ty

is
su

es

“W
e

en
de

d
u

p
ig

n
or

in
g

se
cu

ri
ty

u
n

ti
l

w
e

go
t

a
de

ce
n

t
cu

st
om

er
ba

se
w

he
re

w
e

w
er

e

ac
tu

al
ly

co
n

ce
rn

ed
th

at
if

ou
r

pr
od

u
ct

w
as

co
m

pr
om

is
ed

,
w

e
w

il
l

lo
se

th
es

e

cu
st

om
er

s.
”

P
re

ss
u
re

C
on

ti
n
u
ou

s
p
re

ss
u
re

b
y

su
p

er
io

rs

“I
f

th
ey

fi
n

d
a

se
cu

ri
ty

is
su

e,
th

en
yo

u
w

il
l

be
in

tr
ou

bl
e.

E
ve

ry
bo

dy
w

il
l

be
at

yo
u

r

ba
ck

,
an

d
yo

u
ha

ve
to

fi
x

it
as

so
on

as
po

ss
ib

le
.”

co
n
ti

n
u
ed

..
.

181

..
.

co
n
ti

n
u
ed

C
o
d
e

D
e
sc

r
ip
t
io
n

E
x
a
m
p
l
e
Q
u
o
t
e

C
ar

ee
r

ad
-

va
n
ce

m
en

t

S
of

tw
ar

e
se

cu
ri

ty
eff

or
ts

an
d

k
n
ow

le
d
ge

m
ov

e

em
p
lo

ye
es

u
p

in
th

e

h
ie

ra
rc

h
y

“W
he

n
it

co
m

es
ti

m
e

to
do

pr
om

ot
io

n
s

or
m

ov
e

th
ro

u
gh

ou
t

th
e

sc
al

es
an

d

em
pl

oy
m

en
t

ba
n

ds
,

th
e

pe
op

le
w

it
h

th
e

hi
gh

er
kn

ow
le

dg
e

on
ev

er
yt

hi
n

g
m

ov
e

u
p

an
d

th
e

pe
op

le
w

ho
do

n’
t

n
ec

es
sa

ri
ly

,
li

ke
,

di
dn

’t
ta

ke
th

os
e

se
cu

ri
ty

tr
ai

n
in

g
se

ri
ou

sl
y,

[.
..

]
th

ey
so

rt
of

st
ay

in
th

e
sa

m
e

ra
n

ge
.”

E
x
tr

in
si

c
M

ot
iv

at
io

n
-

In
tr

o
je

ct
ed

P
re

st
ig

e
A

ck
n
ow

le
d
ge

m
en

t
an

d

p
re

se
rv

in
g

se
lf

-i
m

ag
e

“W
he

n
ev

er
so

m
eb

od
y

w
an

ts
to

fi
n

d
ab

ou
t

yo
u

,
th

en
th

ey
go

an
d

ch
ec

k
yo

u
in

th
e

em
pl

oy
ee

w
eb

si
te

.
T

he
n

,
w

he
n

th
ey

cl
ic

k
yo

u
r

n
am

e
an

d
ch

ec
k,

it
sh

ow
s

a
ba

dg
e

th
at

yo
u

’r
e

se
cu

ri
ty

ce
rt

ifi
ed

,
w

hi
ch

gi
ve

s
yo

u
a

go
od

fe
el

in
g.

”

E
x
tr

in
si

c
M

ot
iv

at
io

n
-

Id
en

ti
fi
ed

U
n
d
er

st
an

d
in

g

th
e

im
p
li
ca

ti
on

s

R
ec

og
n
iz

in
g

an
d

u
n
d
er

st
an

d
in

g
th

e

p
ot

en
ti

al
im

p
li
ca

ti
on

s
of

ig
n
or

in
g

se
cu

ri
ty

“J
u

st
u

n
de

rs
ta

n
di

n
g

th
e

im
pl

ic
at

io
n

s,
I

gu
es

s,
of

w
ha

t
co

u
ld

ha
pp

en
[w

ou
ld

m
ot

iv
at

e

de
ve

lo
pe

rs
be

m
or

e
se

cu
ri

ty
-o

ri
en

te
d]

.
I

kn
ow

fo
r

m
e

pe
rs

on
al

ly
w

he
n

I
re

al
iz

ed
ju

st

ho
w

ca
ta

st
ro

ph
ic

so
m

et
hi

n
g

co
u

ld
be

,
ju

st
by

m
ak

in
g

a
si

m
pl

e
m

is
ta

ke
,

or
n

ot
ev

en
a

si
m

pl
e

m
is

ta
ke

,
ju

st
ov

er
lo

ok
in

g
so

m
et

hi
n

g
si

m
pl

e.
u

hh
it

ch
an

ge
s

yo
u

r
fo

cu
s.

”

co
n
ti

n
u
ed

..
.

182

..
.

co
n
ti

n
u
ed

C
o
d
e

D
e
sc

r
ip
t
io
n

E
x
a
m
p
l
e
Q
u
o
t
e

C
om

p
an

y

re
p
u
ta

ti
on

T
h
e

co
m

p
an

y
an

d
it

s

em
p
lo

ye
es

ca
re

ab
ou

t

th
ei

r
re

p
u
ta

ti
on

an
d

h
ow

cu
st

om
er

s
p

er
ce

iv
e

th
e

co
m

p
an

y

“W
e

n
ee

d
to

kn
ow

sa
fe

se
cu

re
co

di
n

g
te

ch
n

iq
u

es
,

w
e

n
ee

d
to

kn
ow

w
ha

t
pa

th
s

th
e

at
ta

ck
er

s
m

ig
ht

ta
ke

,
an

d
ha

ve
yo

u
fi

xe
d

ev
er

yt
hi

n
g

on
yo

u
r

co
de

an
d

yo
u

r
co

de

do
es

n’
t

ha
ve

an
y

vu
ln

er
ab

il
it

ie
s.

[.
..

]
be

ca
u

se
fi

n
al

ly
,

it
is

go
in

g
to

go
u

n
de

r
yo

u
r

lo
go

.”

S
h
ar

ed
re

-

sp
on

si
b
il
it

y

T
h
e

re
sp

on
si

b
il
it

y
of

so
ft

w
ar

e
se

cu
ri

ty
is

sh
ar

ed
am

on
g

d
iff

er
en

t

te
am

s
w

it
h
in

th
e

p
ro

je
ct

te
am

“[
If

w
e

fi
n

d
a

vu
ln

er
ab

il
it

y,
]

w
e

tr
y

n
ot

to
sa

y,
’y

ou
pe

rs
on

al
ly

ar
e

re
sp

on
si

bl
e

fo
r

ca
u

si
n

g
th

is
vu

ln
er

ab
il

it
y’

.
I

m
ea

n
,

it
’s

a
te

am
eff

or
t,

pe
op

le
lo

ok
ed

at
th

at
co

de
an

d

th
ey

pa
ss

ed
on

it
to

o,
th

en
it

’s
sh

ar
ed

,
re

al
ly

.”

In
d
u
ce

d

in
it

ia
ti

ve

O
p
p

or
tu

n
it

ie
s

m
ay

ex
is

t

th
at

le
ad

d
ev

el
op

er
s

to

ta
ke

th
e

so
ft

w
ar

e

se
cu

ri
ty

in
it

ia
ti

ve

“W
he

n
yo

u
se

e
yo

u
r

co
ll

ea
gu

es
ac

tu
al

ly
sp

en
di

n
g

ti
m

e
on

so
m

et
hi

n
g,

yo
u

m
ig

ht
th

in
k

th
at

‘w
el

l,
it

’s
so

m
et

hi
n

g
th

at
’s

w
or

th
sp

en
di

n
g

ti
m

e
on

’,
bu

t
if

yo
u

w
or

ke
d

in
a

co
m

pa
n

y
th

at
n

ob
od

y
ju

st
to

u
ch

es
se

cu
ri

ty
th

en
yo

u
m

ig
ht

n
ot

be
m

ot
iv

at
ed

th
at

m
u

ch
.” E
x
tr

in
si

c
M

ot
iv

at
io

n
-

In
te

gr
at

ed

P
ro

fe
ss

io
n
al

re
sp

on
si

b
il
-

it
y

F
ee

li
n
g

re
sp

on
si

b
le

as
a

p
ro

fe
ss

io
n
al

“I
w

ou
ld

he
si

ta
te

to
re

le
as

e
an

yt
hi

n
g

th
at

’s
n

ot
fu

n
ct

io
n

al
an

d
I

al
so

he
si

ta
te

to

re
le

as
e

an
yt

hi
n

g
th

at
ha

d
se

cu
ri

ty
co

n
ce

rn
s.

”

co
n
ti

n
u
ed

..
.

183

..
.

co
n
ti

n
u
ed

C
o
d
e

D
e
sc

r
ip
t
io
n

E
x
a
m
p
l
e
Q
u
o
t
e

C
on

ce
rn

fo
r

u
se

rs

C
ar

in
g

ab
ou

t
u
se

rs
’

p
ri

va
cy

an
d

se
cu

ri
ty

“I
w

ou
ld

n
ot

fe
el

co
m

fo
rt

ab
le

w
it

h
ba

si
ca

ll
y

ha
vi

n
g

so
m

et
hi

n
g

u
se

d
by

en
d

u
se

rs
th

at

I
di

dn
’t

fe
el

w
as

se
cu

re
,

or
I

di
dn

’t
fe

el
re

sp
ec

ti
ve

of
pr

iv
ac

y,
u

m
m

so
I

w
ou

ld
tr

y
ve

ry

ha
rd

to
n

ot
co

m
pr

om
is

e
on

th
at

.”

In
tr

in
si

c
M

ot
iv

at
io

n

S
el

f-

im
p
ro

ve
m

en
t

T
h
e

in
te

re
st

in
,

an
d

se
lf

-s
at

is
fa

ct
io

n
fr

om
,

im
p
ro

v
in

g
on

e’
s

im
p
le

m
en

ta
ti

on

“A
n

d
so

m
et

im
es

I
w

il
l

ha
ve

th
e

ch
al

le
n

ge
,

th
at

‘o
ka

y,
th

is
ti

m
e

I’
m

go
in

g
to

su
bm

it

fo
r

a
re

vi
ew

w
he

re
n

ob
od

y
w

il
l

gi
ve

m
e

a
co

m
m

en
t’

,
th

ou
gh

th
at

n
ev

er
ha

pp
en

ed
,

bu
t

st
il

l.
..

”

Appendix C

Developers’ Survey

Q1 Where are you currently employed?

◦ Africa

◦ Asia

◦ Canada

◦ Europe

◦ Latin America and the Carribean

◦ Oceania (Australia, New Zealand, Melanesia, Micronesia, Polynesia)

◦ USA

Q2 Please select the statement that best describes your current work.

◦ I am currently on leave

◦ I am self-employed

◦ I am currently employed in design (e.g., UI designer, interaction designer)

◦ I am currently employed in developing software (e.g., programmer, devel-

oper, web developer, software engineer, etc.)

◦ I am currently employed in testing software (e.g., tester, quality analyst,

automation engineer, etc.)

◦ None of the above

Q3 Please select your gender.

◦ Male

◦ Female

◦ Other or not specified

Q4 How long have you been working: [textbox and a single-choice menu containing

“days, weeks, months, years”]

184

185

• in your current company?

• in your current team

• in general as a professional developer?

Q5 What is your job title?

Q6 Where did you mainly learn to program and develop software?

◦ Self-taught

◦ High school courses

◦ College courses

◦ University courses

◦ Online courses

◦ Industry or on-the-job training

◦ Other. Please specify.

Q7 Please select the primary development process used by your team.

◦ Waterfall development (aka Traditional)

◦ Iterative (but not truly agile), such as Spiral

◦ Rational Unified Process (RUP)

◦ Agile development (including: Scrum, Dynamic Systems Development Model

(DSDM), Crystal Methods, Extreme programming (XP), Rapid Applica-

tion Development (RAD), Feature Driven Development (FDD))

◦ Other. Please specify

Q8 Does your project team perform Test-Driven Development (TDD)?

◦ Yes

◦ No

◦ I don’t know

Q9 Please describe the types of software you develop and work on.

Q10 Select the most appropriate category that best describes the software you work

on.

◦ Games

186

◦ Information display and transaction entry, including websites

◦ Tools for artistic creativity

◦ Other consumer-oriented software, including productivity software

◦ Transaction processing systems for business

◦ Other Business-oriented software, including management information

◦ Scientific software, including analysis and visualization

◦ Computational intensive software such as audio and video processing, ma-

chine learning

◦ Design and engineering software, including CAD-CAM

◦ Networking and communications software, including telecom and wireless

◦ Operating systems and their support utilities

◦ Software for vehicles, aerospace and robots

◦ Other real-time control and embedded or systems software for devices

◦ Middleware, system components, libraries and frameworks

◦ Other tools for software developers, such as IDEs and compilers

◦ Other. Please specify.

Q11 How old is your organization? [textbox and a single-choice menu containing

“days, weeks, months, years”]

Q12 What is the total number of employees in your organization?

◦ 1 to 9

◦ 10 to 249

◦ 250 to 499

◦ 500 to 999

◦ 1,000 or more

Q13 How many members are there in your team? Please enter numbers only.

Q14 On a scale from 5 (corresponds exactly) to 1 (does not correspond at all), please

indicate to what extent each of the following items corresponds to the reasons

why you are presently involved in your work. Why do you do what you do?

• Because this is the type of work I chose to do to attain a certain lifestyle.

187

• For the income it provides me.

• I ask myself this question, I don’t seem to be able to manage the important

tasks related to this work.

• Because I derive much pleasure from learning new things.

• Because it has become a fundamental part of who I am.

• Because I want to succeed at this job, if not I would be very ashamed of

myself.

• Because I chose this type of work to attain my career goals.

• For the satisfaction I experience from taking on interesting challenges.

• Because it allows me to earn money.

• Because it is part of the way in which I have chosen to live my life.

• Because I want to be very good at this work, otherwise I would be very

disappointed.

• I don’t know why, we are provided with unrealistic working conditions.

• Because I want to be a “winner” in life.

• Because it is the type of work I have chosen to attain certain important

objectives.

• For the satisfaction I experience when I am successful at doing difficult

tasks.

• Because this type of work provides me with security.

• I don’t know, too much is expected of us.

• Because this job is a part of my life.

Q15 What does it mean to include security into the development process?

Q16 For the rest of the survey, when we mention “security”, we refer to software

security as described below. Please note that we are not asking about other

aspects of security, such as infrastructure and IT security (e.g., ensuring all

users in the organization always have software patches installed, and use secure

passwords on their accounts)

Software security

• Software security is the idea of building an application that is resistant to:

188

malicious attacks, being used by unauthorized people, or causing harm by

inappropriate possibly-accidental use.

• Software security aims to minimize vulnerabilities that could be exploited

by attackers (e.g., eliminating buffer overflow vulnerabilities)

• The use of static analysis tools to find potential vulnerabilities in the soft-

ware being built is an example of software security.

Security functions

• Security functions are the application’s security features to protect re-

sources, e.g., authentication to protect user data.

• They can be implemented as functionality within an application (e.g., user

authentication).

• Verifying usernames and passwords is an example of security functions.

Which of the following aims to reduce malicious attacks that exploit vulnera-

bilities? Please select the most accurate choice based on the description above.

◦ User authentication

◦ Software security

◦ Security functions

◦ All of the above

Q17 (RQ1) Please select the statement that best describes your team. [4-point

Likert scale: strongly agree-strongly disagree.]

• My team believes that software security is important

• We have specific procedures in place to address software security

• We do not think our applications/features are interesting targets for at-

tackers

• We haven’t really considered the security of our software/applications/features

Q18 (RQ1) As a percentage, how much of your team’s overall effort in the devel-

opment lifecycle relates specifically to security tasks?

Q19 (RQ1) How are your project team’s total software security efforts divided

among the following stages? [Text boxes, total must equal 100]

189

• The design stage

• While implementing the code

• During testing by developers

• During code analysis (e.g., using static analysis tools)

• During code review

• During testing that is done by someone other than the code owner

Q20 (RQ1) Rate your agreement with the following. [5-point Likert scale: strongly

agree-strongly disagree.]

• In my team, when we’re choosing a framework/API, we consider whether

it gives us security advantages

• I am satisfied with how my team is handling software security

Q21 (RQ1) How likely do you think it is that features developed by your team con-

tain security issues? [5-point Likert scale: extremely likely-extremely unlikely.]

Q22 (RQ1) Has your company ever experienced a security issue with software it has

developed (e.g., discovering a security vulnerability, or experiencing a security

breach)?

� Yes, we experienced a security breach

� Yes, a vulnerability in shipped code was discovered

� Yes, a vulnerability in un-shipped code was discovered

� No

� I don’t know or prefer not to answer

Q23 (RQ1) How did experiencing a security issue change the attitude towards se-

curity over the long term for each of the following? [single choice: It led to more

awareness and concern for security, It didn’t lead to any change, It lead to less

care and awareness for security, I don’t know/I prefer not to answer]

• You

• Other developers

• Team leaders

• Higher management

190

• Users/Customers

Q24 (RQ2) Rate your agreement with the following statements. I care about secu-

rity because... [5-point Likert scale: strongly agree-strongly disagree, and ‘not

applicable’ choice]

[M1] My company is audited for software security by an external entity

[M2] My company would lose customers in case of a software security breach

[M3] My company could fail (cease to operate) in case of a software security

breach

[M4] My efforts towards software security are recognized

[M5] My efforts towards software security help me grow in the company

[M6] My efforts towards software security are financially rewarding (e.g., through

bonuses or a raise)

[M7] My company mandates security practices and I have to follow them

[M8] I see the benefit in security practices mandated by my company

[M9] I understand that my code can have security implications

[M10] My colleagues care about software security

[M11] I care about my company’s reputation

[M12] I care about my users’ security and privacy

[M13] Software security is in my company’s culture

[M14] Software security is a shared responsibility by all those involved in the

development lifecycle

[M15] I see software security as my responsibility

[M16] I feel good when I learn about software security

[M17] I feel good when I address potential security issues in my code

[M18] I like to challenge myself to write secure code

[M19] Similar software to that on which I work suffered a security breach and

management now cares about securing our applications

[M20] Similar software to that on which I work suffered a security breach and it

was an eye-opener for me

[M21] I realized securing my code is important after reading about security

breaches in the news

191

Q25 (RQ2) Rate your agreement with each of the following statements. [5-point

Likert scale: strongly agree-strongly disagree]

[D1] Software security is not my responsibility because it’s not in my job de-

scription

[D2] Software security does not fit in my schedule

[D3] Software security is a burden on top of my main responsibilities

[D4] Software security is not mandated by my employer

[D5] Software security is handled by someone else in the product lifecycle

[D6] We don’t have to worry much about security because frameworks (includ-

ing APIs)/programming language in-house tools we use handle software

security for us

[D7] My team doesn’t spend any specific efforts towards software security

[D8] We defer software security due to competing priorities

[D9] In my team, it is more important to deliver features on time than to address

software security

[D10] If we focus more on software security, we might lose our business opportu-

nities

[D11] There are no repercussions to ignoring software security

[D12] We do not have competition, so we won’t lose customers in case of a

software security issue

[D13] I won’t be blamed if a security issue is found in my code

[D14] It’s unlikely that attackers will attack us

[D15] The software I develop is not prone to security attacks

[D16] Things are fine as they are, we haven’t experienced any security breaches

[D17] No one else cares about software security, I won’t either

[D18] I understand the importance of addressing security, but I won’t waste my

time on it since no one else does

[D19] I used to push for software security, but I was perceived negatively by my

colleagues

[D20] We do not have a formal process for software security

[D21] Available security code analysis tools are not useful

192

[D22] I am not aware of tools that would allow security analysis of my code

[D23] I do not have time to address software security

[D24] I do not have necessary knowledge to address software security

[D25] There aren’t enough people in my team to address software security

[D26] My team does not have the budget to address software security

[D27] We’re doing fine, I don’t think we should change in terms of software

security

[D28] We have been following the same procedures for years and I don’t want to

change them

[D29] I tend to resist when I get assigned a security task

Q26 (RQ1) Rate your agreement with each of the following statements. [5-point

Likert scale: strongly agree-strongly disagree, and ‘not applicable’ choice]

[S1] We rely on libraries and frameworks (including APIs) to help guarantee

software security

[S2] Our company/team has baseline security standards with which 3rd party

code should comply

[S3] We built our own in-house frameworks to help guarantee software security

[S4] I can get deadline extensions to handle software security

[S5] When a deadline approaches, I try to reduce my workload to focus on

securing my software

[S6] I have my own mental checklist of software security issues that I need to

consider in my code

[S7] I have come up with my own software security best practices

[S8] If I didn’t have time to address software security, I’d ship the product

after adding a work around that allows me to remotely disable the software

feature suffering a security breach

[S9] When working on a software security issue, I can get help from others who

worked on similar issues

[S10] I prefer to ask for software security advice informally (e.g., by casually

asking a colleague, or through discussions over lunch)

[S11] I can rely on the more experienced members of my company/team for help

193

and security advice

[S12] Software security best practices are incorporated in automated checks we

run

[S13] Software security best practices are incorporated in tools we use

[S14] We have a document/checklist of items that we need to consider for our

application to be secure

[S15] I receive specific instructions on how to solve security issues found in my

code

[S16] In code reviews, reviewers explain security issues and fixes to me rather

than referring me to resources/books

Appendix D

Types of Software Developed by Survey Participants

0 2 4 6 8 10 12 14 16 18 20 22 24

% of participants

ty
p

es
of

so
ft

w
ar

e

Games

Computational intensive software such as audio and video processing, machine learning

Design and engineering software, including CAD-CAM

Networking and communications software, including telecom and wireless

Other tools for software developers, such as IDEs and compilers

Operating systems and their support utilities

Software for vehicles, aerospace and robots

Middleware, system components, libraries and frameworks

Scientific software, including analysis and visualization

Other consumer-oriented software, including productivity software

Other real-time control and embedded or systems software for devices

Other

Information display and transaction entry, including websites

Transaction processing systems for business

Other Business-oriented software, including management information

Figure D.1: Types of software developed by survey participants. The classification of
software types was adapted from [63]

194

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Scope
	Motivation
	Research Question
	Contributions
	Thesis Outline
	Related Publications

	Background and Related Work
	Software Engineering
	Security Initiatives
	Human Factors in Software Engineering
	Factors Influencing Developers' Practices
	Motivations for Conducting Code Reviews
	Reasons for Use and Under-Use of SAT!s

	Human Factors in Software Security
	Security Tool Adoption
	Developers' Abilities and Expertise
	Improving and Introducing New Security Tools and Methodologies

	Software Visualizations
	Research Gap Analysis
	Background on Activity Theory and Self-Determination Theory
	Activity Theory
	SDT!

	Visual Representation of Source Code Vulnerabilities
	Using the Cognitive Dimensions Framework for Usability Evaluation
	Using the Cognitive Walkthrough Methodology for Usability Evaluation
	FindBugs' Study
	Study Design
	Results

	Cesar
	Cesar's Study
	Study Design
	Cesar's Strengths

	Future Enhancements
	Discussion
	Limitations
	Summary

	Security in the Software Development Lifecycle
	Study Design and Methodology
	Interview Study Design
	Participant Demographics
	Analysis
	Limitations

	Results: Security in Practice
	Exploring Practices by Development Stage
	The adopters vs. the Inattentive

	Software Security Best Practices
	Interpretation of Results
	Current Practices versus Best Practices
	Factors Affecting Security Practices
	Future Research Directions

	Conclusion

	Security Knowledge and Motivation
	Using Grounded Theory for Analysis
	Researcher Bias

	Knowledge Acquisition Taxonomy
	Formal Learning
	Semi-Formal Learning
	Informal Learning
	Insights Based on the Taxonomy
	Additional Use for the Knowledge Acquisition Taxonomy

	Motivation for Software Security
	Amotivation
	Intrinsic and Extrinsic Motivations

	Internalizing Software Security
	Summary

	Survey
	Survey Methodology
	Survey Design
	Testing the Survey Tool
	Participant Recruitment
	Data Quality
	Participant Demographics

	Survey Analysis
	Addressing the Research Questions
	Factor Analysis
	Developers' Work Motivation
	Developers' Mental Models of Software Security

	Security in the SDLC!
	Efforts Towards Security
	Behaviours and Attitudes
	Experiencing Security Issues
	Strategies to Address Software Security

	Motivators and Deterrents to Security
	Software Security Motivators
	Deterrents to Software Security

	Effect of Different Characteristics on Software Security
	Development Methodology
	Company Size
	TDD!

	Discussion
	RQ1: How Does Security Fit in the Development Lifecycle in Real Life?
	RQ2: What are The Current Motivators and Deterrents to Developers Paying Attention to Security?
	RQ3: Does the Development Methodology, Company Size, or Adopting TDD! Influence Software Security?

	Limitations
	Conclusion

	Discussion, Future work, and Conclusions
	Thesis Contributions
	Insights on Conducting Studies with Developers
	Answering the Thesis Research Question: Recommendations for Supporting Developers
	Future Research Directions
	Conclusion

	Bibliography
	Interview Script
	Motivations and Amotivations for Software Security
	Developers' Survey
	Types of Software Developed by Survey Participants

