
Collaborative Security Code-Review

Towards Aiding Developers Ensure Software-Security

Hala Assal∗, Jeff Wilson, Sonia Chiasson, and Robert Biddle
School of Computer Science

Carleton University
Ottawa, Canada

1. INTRODUCTION
Humans make mistakes, and software programmers are no

exception. Software vulnerabilities are discovered everyday;
close to 8,000 vulnerabilities were reported in 2014, and al-
most 2,500 were reported in the first four months of 2015 [9].
Microsoft Security Response Centre defines software vulner-
abilities as a security exposure that results from a product
weakness that the product developer did not intend to intro-
duce and should fix once it is discovered [8].

Integrating security in the Software Development Lifecy-
cle (SDLC) leads to better quality software than when secu-
rity was considered as an additional task [11]. Major soft-
ware companies are taking the initiative to integrate security
in the SDLC, starting from the early stages of the develop-
ment. For example, Microsoft has been following a security-
oriented software development process since 2004. The Mi-
crosoft Security Development Lifecycle (SDL) introduces se-
curity early in the development process and throughout the
different stages of the traditional SDLC [7]. Google, on the
other hand, has an independent Security Team responsible
for aiding security reviews during the design and implemen-
tation phases, as well as providing ongoing consultation on
project-relevant security risks and their possible remedies.

Static analysis [12] is a method of software testing that can
be performed throughout the different stages of the develop-
ment to ensure software is free of vulnerabilities introduced
to the code due to programming errors. Static analysis does
not require the code to be executed, thus incomplete versions
of the software can be tested. This allows testing software
during early stages when errors are less expensive to fix [3,
1]. Static-code Analysis Tools (SATs) are tools that auto-
matically analyze static-code to uncover vulnerabilities.

2. Static-code Analysis Tools (SATs)
Despite their benefits, SATs are not widely accepted by

the Software Engineering community. Some reasons for the
underuse of SATs are [5, 6]: (i) The quality of tool output.
A SAT produces false positives when it mistakenly reports
a vulnerability. With large projects, SATs produce a large
volume of warnings that could reach thousands. Thus, with
many false positives and up to thousands of potential vul-
nerabilities, it is sometimes inefficient for developers to use
these tools. (ii) Support for collaboration. Developers are
reluctant to use SATs because they do not adequately sup-
port collaboration between team members. Even though
some tools allow developers to exchange vulnerability re-

∗Corresponding author: HalaAssal@scs.carleton.ca

ports, they usually takes the developer out of the devel-
opment environment, and thus out of context, discourag-
ing developers from using this feature, and subsequently the
tool altogether. (iii) Tool customization. Many tools require
complicated steps to be customized, and yet they do not ful-
fill developers’ needs. Developers believe the quality of tool
output could be improved (e.g., showing less false positives)
if they were able to customize it to look for vulnerabilities
they care about the most. (iv) Result understandability.
SAT fail to explain their reasons for triggering a warning;
they usually do not clearly explain what the problem is,
why it is considered a problem, and how it could be fixed.
Without obvious reasoning about why a warning was issued,
developers may not be able to develop trust for the analysis
tool, thus lowering the likelihood of using it for vulnerability-
detection. (v) Actionable tool output. Code suggestions and
quick fixes are two features missing from most current SATs.
Developers expect to be guided to fix a detected vulnerabil-
ity. However, further research is needed in this regards, as
developers might wrongfully accept a quick fix to a false
positive, without thoroughly inspecting the code and the
vulnerability report, potentially leading to more problems.

In this poster we aim to shed light on specific usability
issues of tools used by developers to uncover security vul-
nerabilities in source code (e.g., SATs); a topic that has
not been thoroughly studied in the usable security commu-
nity. We also introduce a prototype to support what we call
collaborative security code-review (CSCR), where developer-
s/testers collaborate to ensure the software under review is
free from security vulnerabilities.

3. COGNITIVE WALKTHROUGH OF FIND-
BUGS

We began by surveying the different available tools that
perform static-analysis for Java code [10], such as CodeS-
onar,1 klocwork,2 Coverity-SAVE,3 and Findbugs.4 For the
purpose of our work, we chose to use Findbugs as it is an
open source tool, is one of the tools used in Microsoft SDL,
and has been one of the most used tools in similar research
projects [5, 2, 13].

Next, we conducted a Cognitive Walkthrough of Findbugs
v.2.0 with a group of six evaluators who are experts in the
fields of security and usable security. The session lasted 90

1http://www.grammatech.com/codesonar
2http://www.klocwork.com
3http://www.coverity.com/products/coverity-save/
4http://findbugs.sourceforge.net

1



Figure 1: A screenshot of the CSCR prototype

minutes and was voice recorded. Two of the evaluators also
took notes during the session. The session started with run-
ning Findbugs analysis on the source code of Apache Tomcat
v.6.0.41.5 Next, the evaluators explored the tool’s interface
and its warnings of potential vulnerabilities. The evaluators
then focused on some warnings and worked towards classi-
fying them as false positives or true vulnerabilities. Finally,
the evaluators discussed different features they would prefer
to be available in SATs.

We concluded, in accordance with previous research, that
Findbugs does not adequately support collaboration. For in-
stance, reviewers cannot easily share their reviews. We also
observed, on multiple occasions, that reviewers were trying
to direct each other’s attention to areas in the code by point-
ing to the code and drawing imaginary annotations on the
screen. In addition, we noticed that reviewers were absorbed
in classifying individual vulnerability warnings, rather than
assessing the overall security of the software and focusing on
the bigger picture.

4. CSCR PROTOTYPE
Figure 1 shows a screenshot of the CSCR prototype that

was built using React6 and NODE-RED7 Javascript frame-
works. The top left pane shows a visual representation of
detected vulnerabilities. Cell(i, j), shows the number of de-
tected vulnerabilities that belong to category i and have
rank j.8 Tapping on a cell populates the bottom left pane
with a list of vulnerabilities belonging to the chosen category
and rank. Tapping on one of the listed vulnerabilities, shows
the source code where this vulnerability appears in the right
pane. Through the CSCR prototype we aim to leverage the
benefits of SATs, while overcoming their shortcomings. In
particular we aim to:
Support collaboration in code reviews. The CSCR
prototype uses large multitouch displays as an interface. Us-
ing large multitouch displays for collaborative work is a re-
search area that, although in its infancy, shows promising
results in supporting and promoting collaboration between
team members. Moreover, the prototype implements col-
laborative gestures to leverage their intuitiveness, and test
their potential to encourage collaboration and aid in effec-
tive communication and knowledge flow within the team.
Support analysis. Visual analysis environments effectively
focus developers’ attention to the most critical vulnerabil-

5https://tomcat.apache.org/download-60.cgi
6https://facebook.github.io/react/
7http://nodered.org
8The explanation of “category” and “rank” can be found on
http://findbugs.sourceforge.net/findbugs2.html

ities in source code[4]. The CSCR prototype uses interac-
tive information visualizations to allow developers to get an
overview of the system’s security, with the ability to filter
vulnerability categories, zoom into source code files, and in-
spect details of vulnerabilities. With such visual analysis
support, we hypothesize that developers will be able to pri-
oritize vulnerabilities, focus on the most important ones, and
discover hidden patterns. In addition, we aim to investigate
the effectiveness of suggesting known vulnerability fixes.
Ensure seamless integration with the SDLC. The CSCR
aims to support the natural workflow for developers while
encouraging collaboration at key points. We will investigate
different functionalities, such as enabling developers to an-
notate source code, save and reload these annotations, write
vulnerability reviews for a single or multiple vulnerabilities,
link relevant documentation to reviews, assign vulnerabili-
ties to developers to fix, and auto-generate review documen-
tation based on the aforementioned functionalities.

5. REFERENCES
[1] P. Anderson. Measuring the value of static-analysis

tool deployments. Security Privacy, IEEE,
10(3):40–47, May 2012.

[2] N. Ayewah and W. Pugh. The Google FindBugs Fixit.
In Int. Symp. on Software Testing and Analysis,
ISSTA, 2010. ACM.

[3] B. Chess and G. McGraw. Static analysis for security.
IEEE Security & Privacy, 2(6):76–79, 2004.

[4] J. R. Goodall, H. Radwan, and L. Halseth. Visual
analysis of code security. In Int. Symp. on
Visualization for Cyber Security, VizSec, 2010. ACM.

[5] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In Int. Conf. on
Software Engineering (ICSE), 2013.

[6] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and
E. Whitehead. Does bug prediction support human
developers? Findings from a Google case study. In Int.
Conf. on Software Engineering (ICSE), 2013.

[7] Microsoft Corp. Microsoft Security Development
Lifecycle (SDL) – process guidance. https://msdn.
microsoft.com/en-us/library/windows/desktop/

84aed186-1d75-4366-8e61-8d258746bopq.aspx,
2012. [Accessed May-2015].

[8] Microsoft Corp. Definition of a security vulnerability.
https://msdn.microsoft.com/en-us/library/

cc751383.aspx, 2015. [Accessed May-2015].

[9] National Vulnerabiliy Database. NVD statistics
results.
https://web.nvd.nist.gov/view/vuln/statistics.
[Accessed May-2015].

[10] V. Okun, Delaitre, Aurelien, and P. E. Black. Report
on the Static Analysis Tool Exposition (SATE) IV.
NIST Special Publication 500-297. National Institute
of Standards and Technology, 2013.

[11] A. Shostack and C. Wysopal. Threat modeling:
designing for security. John Wiley & Sons, 2014.

[12] I. Sommerville. Software Engineering. Pearson
Education, 9 edition, November 2011.

[13] H. Zhong and Z. Su. An empirical study on real bug
fixes. In Int. Conf. on Software Engineering (ICSE),
2015.

2


