
Security and Usability Challenges of Moving-Object CAPTCHAs:
Decoding Codewords in Motion

Y. Xu†, G. Reynaga‡, S. Chiasson‡, J-M. Frahm†, F. Monrose† and P. van Oorschot‡

†Department of Computer Science, University of North Carolina at Chapel Hill, USA
‡School of Computer Science, Carleton University, Canada
email:{yix,jmf,fabian}@cs.unc.edu, {gerardor,chiasson,paulv}@scs.carleton.ca

Abstract
We explore the robustness and usability of moving-
image object recognition (video) captchas, designing and
implementing automated attacks based on computer vi-
sion techniques. Our approach is suitable for broad
classes of moving-image captchas involving rigid ob-
jects. We first present an attack that defeats instances
of such a captcha (NuCaptcha) representing the state-of-
the-art, involving dynamic text strings called codewords.
We then consider design modifications to mitigate the at-
tacks (e.g., overlapping characters more closely). We im-
plement the modified captchas and test if designs mod-
ified for greater robustness maintain usability. Our lab-
based studies show that the modified captchas fail to of-
fer viable usability, even when the captcha strength is re-
duced below acceptable targets—signaling that the mod-
ified designs are not viable. We also implement and test
another variant of moving text strings using the known
emerging images idea. This variant is resilient to our at-
tacks and also offers similar usability to commercially
available approaches. We explain why fundamental ele-
ments of the emerging images concept resist our current
attack where others fails.

1 Introduction

Humans can recognize a wide variety of objects at a
glance, with no apparent effort, despite tremendous vari-
ations in the appearance of visual objects; and we can
answer a variety of questions regarding shape properties
and spatial relationships of what we see. The apparent
ease with which we recognize objects belies the mag-
nitude of this feat. We can also do so with astonishing
speed (e.g., in a fraction of a second) [41]. Indeed, the
Cognitive Science literature abounds with studies on vi-
sual perception showing that, for the most part, people
do not require noticeably more processing time for ob-
ject categorization (e.g., deciding whether the object is

a bird, a flower, a car) than for more fine grained object
classification (e.g., an eagle, a rose) [13]. Grill et al. [20]
showed that by the time subjects knew that a picture con-
tained an object at all, they already knew its class. If such
easy-for-human tasks are, in contrast, difficult for com-
puters, then they are strong candidates for distinguishing
humans from machines.

Since understanding what we see requires cognitive
ability, it is unsurprising that the decoding of motion-
based challenges has been adopted as a security mecha-
nism: various forms of motion-based object recognition
tasks have been suggested as reverse Turing tests, or what
are called Completely Automated Public Turing tests to
tell Computers and Humans Apart (captchas). Among
the key properties of captchas are: they must be easily
solved by humans; they should be usable; correct solu-
tions should only be attainable by solving the underly-
ing AI problem they are based on; they should be robust
(i.e., resist automated attacks); and the cost of answering
challenges with automated programs should exceed that
of soliciting humans to do the same task [1, 46]. To date,
a myriad of text, audio, and video-based captchas have
been suggested [22], many of which have succumbed to
different attacks [6, 7, 19, 32, 47, 48, 53].

While text-based captchas that prompt users to rec-
ognize distorted characters have been the most popular
form to date, motion-based or video captchas that pro-
vide some form of moving challenge have recently been
proposed as the successor to static captchas. One promi-
nent and contemporary example of this new breed of
captchas is NuCaptcha [35], which asserts to be “the
most secure and usable captcha,” and serves millions
of video captchas per day. The general idea embod-
ied in these approaches is to exploit the remarkable per-
ceptual abilities of humans to unravel structure-from-
motion [30]. For example, users are shown a video with a
series of characters (so-called random codewords) mov-
ing across a dynamic scene, and solve the captcha by en-
tering the correct codeword. For enhanced security, the

Authors' copy. Published at USENIX Security 2012

codewords are presented among adversarial clutter [32]
(e.g., moving backgrounds and other objects with dif-
ferent trajectories), and consecutive characters may even
overlap significantly. The underlying assumption is that
attacks based on state-of-the-art computer vision tech-
niques are likely to fail at uncovering these challenges
within video sequences, whereas real users will be able
to solve the challenges with little effort.

However, unlike in humans, it turns out that object
classification, not recognition of known objects, is the
more challenging problem in Computer Vision [43].
That is, it is considerably more difficult to capture in
a computer recognition system the essence of a dog, a
horse, or a tree—i.e., the kind of classification that is
natural and immediate for the human visual system [29].
To this day, classification of objects in real-world scenes
remains an open and difficult problem. Recognizing
known objects, on the other hand, is more tractable, espe-
cially where it involves specific shapes undergoing trans-
formations that are easy to compensate for. As we show
later, many of these well-defined transformations hold in
current motion-based captcha designs, due in part to de-
sign choices that increase usability.

In what follows, we present an automated attack to
defeat the current state-of-the-art in moving-image ob-
ject recognition captchas. Through extensive evaluation
of several thousand real-world captchas, our attack can
completely undermine the security of the most prominent
examples of these, namely those currently generated by
NuCaptcha. After examining properties that enable our
attack, we explore a series of security countermeasures
designed to reduce the success of our attacks, including
natural extensions to the scheme under examination, as
well as an implementation of a recently proposed idea
(called Emerging Images [31]) for which attacks do not
appear as readily available. Rather than idle conjecture
about the efficacy of countermeasures, we implement
captchas embedding them and evaluate these strength-
ened variations of moving-image captchas by carrying
out and reporting on a usability study with subjects asked
to solve such captchas.

Our findings highlight the well-known tension be-
tween security and usability, which often have subtle in-
fluences on each other. In particular, we show that the
design of robust and usable moving-image captchas is
much harder than it looks. For example, while such
captchas may be more usable than their still-based coun-
terparts, they provide an attacker with a significant num-
ber of views of the target, each providing opportunities to
increase the confidence of guesses. Thus the challenge is
limiting the volume of visual cues available to automated
attacks, without adversely impacting usability.

2 Captcha Taxonomy and Related Work

Most captchas in commercial use today are character-
recognition (CR) captchas involving still images of dis-
torted characters; attacks essentially involve building on
optical character recognition advances. Audio captchas
(AUD) are a distinct second category, though unre-
lated to our present work. A third major category,
image-recognition (IR) captchas, involves classification
or recognition, of images or objects other than charac-
ters. A well-known example, proposed and then bro-
ken, is the Asirra captcha [16, 19] which involves ob-
ject classification (e.g., distinguishing cats from other
animals such as dogs). CR and IR schemes may in-
volve still images (CR-still, IR-still), or various types of
dynamic images (CR-dynamic, IR-dynamic). Dynamic
text and objects are of main interest in the present paper,
and contribute to a cross-class category: moving-image
object recognition (MIOR) captchas, involving objects
in motion through animations, emergent-image schemes,
and video [10–12, 26, 31, 35, 38]. A fourth category,
cognitive-based captchas (COG), include puzzles, ques-
tions, and other challenges related to the semantics of
images or language constructs. We include here content-
based video-labeling of YouTube videos [24].

The most comprehensive surveys of captchas to date
are those by Hidalgo and Maranon [22] and Basso and
Bergadano [2]. We also recommend other comprehen-
sive summaries: for defeating classes of AUD captchas,
Soupionis [40] and Bursztein et al. [4, 6]; for defeating
CR captchas, Yan et al. [47, 50] and Bursztein [7]; for a
systematic treatment of IR captchas and attacks, Zhu et
al. [53], as well as for robustness guidelines.

Usability has also been a central focus, for example,
including a large user study of CR and AUD captchas
involving Amazon Mechanical Turk users [5], a user
study of video-tagging [24], usability guidelines and
frameworks related to CR captchas [49]. Chellapilla et
al. [8, 9] also address robustness. Hidalgo et al. [22]
and Bursztein et al. [7] also review evaluation guidelines
including usability. Lastly, research on underground
markets for solving captchas [33], and malware-based
captcha farms [15], raise interesting questions about the
long-term viability of captchas.

Lastly, concurrent to our own work, Bursztein [3]
presents an approach to break the video captchas used by
NuCaptcha. The technique exploits the video by treat-
ing it as a series of independent frames, and then applies
a frame-based background removal process [7] to dis-
card the video background. Next, frame characteristics
(e.g., spatial salient feature density and text aspect ratio
of the overlapping letters) are used to detect the code-
word, after which a clustering technique is used to help
segment the characters of the codeword. As a final step,

traditional CR-still based attacks are used to recognize
the characters in each of the segmented frames. The ap-
proach taken by Bursztein is closely related to our base-
line method (§4.1) as it only uses single frame segmen-
tation and recognition. In contrast, our subsequent tech-
niques inherently use temporal information contained in
the video to identify the codeword, to improve the seg-
mentation, and to enhance the recognition step during the
codeword recovery process.

3 Background

In the human brain, it is generally assumed that an image
is represented by the activity of “units” tuned to local
features (e.g., small line and edge fragments). It is also
widely believed that objects appearing in a consistent or
familiar background are detected more accurately, and
processed more quickly, than objects appearing in an in-
consistent scene [36]. In either case, we must somehow
separate as much as possible of the image once we see
it. This feat is believed to be done via a segmentation
process that attempts to find the different objects in the
image that “go together” [43].

As with other aspects of our visual system, segmen-
tation involves different processes using a multitude of
sources of information (e.g., texture and color), which
makes it difficult to establish which spatial properties and
relations are important for different visual tasks. While
there is evidence that human vision contains processes
that perform grouping and segmentation prior to, and in-
dependent of, subsequent recognition processes, the ex-
act processes involved are still being debated [36].

Given the complexity of the visual system, it is not
surprising that this feat remains unmatched by computer
vision algorithms. One of the many reasons why this
task remains elusive is that perception of seemingly sim-
ple spatial relations often requires complex computations
that are difficult to unravel. This is due, in part, to the fact
that object classification (that is, the ability to accurately
discriminate each object of an object class from all other
possible objects in the scene) is computationally difficult
because even a single individual object can already pro-
duce an infinite set of different images (on the retina)
due to variations in position, scale, pose, illumination,
etc. Discriminating objects of a certain class is further
complicated by the often very large inner class variabil-
ity, which significantly changes the appearance beyond
the factors encountered for a single object. Hence, vision
operates in a high-dimensional space, making it difficult
to build useful forms of visual representation.

In computer vision, the somewhat simpler process of
recognizing known objects is simulated by first analyz-
ing an image locally to produce an edge map composed
of a large collection of local edge elements, from which

we proceed to identify larger structures. In this paper, we
are primarily interested in techniques for object segmen-
tation and tracking. In its simplest form, object tracking
can be defined as the problem of estimating the trajec-
tory of an object in the image plane as it moves around
a scene. Tracking makes use of temporal information
computed from a sequence of frames. This task can be
difficult for computer vision algorithms because of issues
related to noise in the image, complex object motion, the
nonrigid nature of objects, etc. However, the tracking
problem can be simplified if one can assume that ob-
ject motion is smooth, the motion is of constant velocity,
knowledge of the number and the size of the objects, or
even appearance and shape information. In NuCaptcha,
for example, many of these simplifications hold and so
several features (e.g., edges, optical flow) can be used to
help track objects. The correspondence search from one
frame to the next is performed by using tracking.

In video, this correspondence can be achieved by
building a representation of the scene (called the back-
ground model) and then finding deviations from the
model for each incoming frame. Intuitively, any signif-
icant change in the image region from the background
model signifies a moving object. The pixels constitut-
ing the regions undergoing change are marked for fur-
ther processing, and a connected component algorithm
is applied to obtain connected regions. This process is
typically referred to as background subtraction. At this
point, all that is needed is a way to partition the im-
age into perceptually similar regions, and then infer what
each of those regions represent. In §4, we discuss the ap-
proach we take for tackling the problems of background
subtraction, object tracking, segmentation, and classifi-
cation of the extracted regions.

4 Our Automated Approach

The aforementioned processes of segmentation, object
tracking, and region identification are possible in today’s
MIOR captchas because of several design decisions that
promote rapid visual identification [14]. NuCaptcha, for
instance, presents a streaming video containing moving
text against a dynamic background. The videos have four
noticeable characteristics, namely: (1) the letters are pre-
sented as rigid objects in order to improve a user’s abil-
ity to recognize the characters; (2) the background video
and the foreground character color are nearly constant in
color and always maintain a high contrast—we posit that
this is done to ease cognitive burden on users; (3) the
random “codewords” each have independent (but over-
lapping trajectories) which better enable users to distin-
guish adjacent characters; (4) lastly, the codewords are
chosen from a reduced alphabet where easily confused
characters are omitted. Some examples of a state-of-the-

Figure 1: Example moving-image object recognition (MIOR)
captchas from NuCaptcha (see http://nucaptcha.com/demo).

art MIOR captcha are given in Figure 1.
Before delving into the specifics of our most success-

ful attack, we first present a naïve approach for automat-
ically decoding the challenges shown in MIOR captchas.
To see how this attack would work, we remind the reader
that a video can be seen as a stream of single pictures that
simply provides multiple views of a temporally evolving
scene. It is well known that human observers perceive a
naturally moving scene at a level of about thirty frames
per second, and for this reason, video captchas tend to
use a comparable frame rate to provide a natural video
experience that is not too jerky. Similarly, the challenge
shown in the captcha is rendered in multiple frames to
allow users to perceive and decode the codewords in an
effortless manner. In the NuCaptcha scheme, for exam-
ple, a single frame may contain the full codeword.

4.1 A Naïve Attack

Given this observation, one way to attack such schemes
is to simply apply traditional OCR-based techniques that

work well at defeating CR-still captchas (e.g., [32, 47]).
More specifically, choose k frames at random, and iden-
tify the foreground pixels of the codeword by comparing
their color with a given reference color; notice the at-
tacker would likely know this value since the users are
asked to, for example, “type the RED moving charac-
ters”. Next, the length of the codeword can be inferred
by finding the leftmost and rightmost pixels on the fore-
ground. This in essence defines a line spanning over the
foreground pixels (see Figure 2). The positions of the
characters along the line can be determined by dividing
the line into n equidistant segments, where n denotes the
desired number of characters in the codeword. For each
of the segments, compute the center of gravity of the
foreground pixels in the vertical area of the image be-
longing to the segment. Lastly, select an image patch (of
the expected size of the characters) around the centers of
gravity of the segments, and feed each patch to a classi-
fier. In our work, we use a neural network approach [39]
because it is known to perform well at this object identi-
fication task. The neural network is trained in a manner
similar to what we discuss in §4.3.

Figure 2: Naïve attack: Based on the foreground pixels, we
find the longest horizontal distance (white line) and the mean
value of vertical area (the respective bounding boxes above).

The above process yields a guess for each of the char-
acters of the codeword in the chosen frames of the video.
Let i denote the number of possible answers for each
character. By transforming the score from the neural net-
work into the probability pi jk where the j-th character
of the codeword corresponds to the i-th character in the
k-th frame, we calculate the probability Pi j for each char-
acter j = 1, . . . ,n of the codeword over all k frames as
Pi j =

1
sp

∑k pi jk with sp = ∑i, j,k pi jk. The choice that has
the highest probability is selected as the corresponding
character. With k = 10, this naïve attack resulted in a
success rate of approximately 36% accuracy in correctly
deducing all three characters in the codewords of 4000
captchas from NuCaptcha. While this relatively simple
attack already raises doubts about the robustness of this
new MIOR captcha, we now present a significantly im-
proved attack that makes fewer assumptions about pixel
invariants [50] in the videos.

4.2 Exploiting Temporal Information
A clear limitation of the naïve attack is the fact that it
is not easily generalizable and it is not robust to slight
changes in the videos. In what follows, we make no as-
sumption about a priori knowledge of the color of the
codewords, nor do we assume that the centers of grav-
ity for each patch are equidistant. To do so, we apply a
robust segmentation method that utilizes temporal infor-
mation to improve our ability to recognize the characters
in the video.

D
ec

od
in

g
Pr

oc
es

s

❶
tracking

video stream

foreground extraction

segmentation

classification

❷

❸

❹

❺

feedback

Figure 3: High-level overview of our attack. (This, and other
figures, are best viewed in color.)

A basic overview of our attack is shown in Figure 3.
Given a MIOR captcha we extract the motion contained
in the video using the concept of salient features. Salient
features are characteristic areas of an image that can be
reliably detected in several frames. To infer the motion of
the salient feature points, we apply object tracking tech-
niques (stage Ê). With a set of salient features at hand,
we then use these features to estimate the color statis-
tics of the background. Specifically, we use a Gaussian
mixture model [18], which represents the color statistics
of the background through a limited set of Gaussian dis-
tributions. We use the color model of the background
to measure, for all pixels in each frame, their likelihood
of belonging to the background. Pixels with low likeli-
hoods are then extracted as foreground pixels (stage Ë).
The trajectories of the foreground pixels are then refined
using information inferred about the color of these pix-
els, and a foreground color model is built. Next, to ac-
count for the fact that all characters of the codewords
move independently, we segment the foreground into n

segments as in the naïve attack (stage Ì). We select each
image patch containing a candidate character and evalu-
ate the patch using a neural network based classifier [39]
(stage Í). The classifier outputs a likelihood score that
the patch contains a character. As a final enhancement,
we incorporate a feedback mechanism in which we use
high confidence inferences to improve low confidence
detections of other patches. The net effect is that we
reduce the distractions caused by mutually overlapping
characters. Once all segments have been classified, we
output our guess for all characters of the codeword. We
now discuss the stages of our approach in more detail.

Figure 4: The circles depict salient features. These salient
features are usually corners of an object or texture areas.

Detecting Salient Features and Their
Motion (Stage Ê)
A well-known class of salient features in the computer
vision community is gray value corners in images. In
this paper, we use the Harris corner detector [21] for
computing salient features, which uses the image gradi-
ent to identify points in the image with two orthogonal
gradients of significant magnitude. An example of the
detected corners is shown in Figure 4.

After identifying salient features in one frame of the
video we now need to identify their respective position
in the subsequent frames of the video. In general, there
are two choices for identifying the corresponding salient
features in the subsequent frames of the video. The
first choice is to independently detect salient features in
all frames and then compare them by using their image
neighborhoods (patches) to identify correlating patches
through an image based correlation (commonly called
matching). The second class of methods leverages the
small motion occurring in between two frames for an it-
erative search (commonly called tracking).

We opt for a tracking method given that tracking re-
sults for video are superior in accuracy and precision
to matching results. Specifically, we deploy the well
known KLT-tracking method [28], which is based on the
assumption that the image of a scene object has a con-
stant appearance in the different frames capturing the
object (brightness constancy). The MIOR captchas by
NuCaptcha use constant colors on the characters of the
codewords. This implies that the NuCaptcha frames are

well suited for our method. Note that no assumption
about the specific color is made; only constant appear-
ance of each of the salient features is assumed. We return
to this assumption later in Section 5.2.

Motion Trajectory Clustering (Stage Ë)

In a typical video, the detected salient features will be
spread throughout the image. In the case of NuCaptcha,
the detected features are either on the background, the
plain (i.e., non-codeword) characters or the codeword
characters. We are foremost interested in obtaining the
information of the codeword characters. To identify the
codeword characters we use their distinctive motion pat-
terns as their motion is the most irregular motion in the
video captcha. In the case of NuCaptcha, we take advan-
tage of the fact that the motion trajectories of the back-
ground are significantly less stable (i.e., across consec-
utive frames) than the trajectories of the features on the
characters. Hence we can identify background features
by finding motion trajectories covering only a fraction of
the sequence; specifically we assume presence for less
than l = 20 frames. In our analysis, we observed little
sensitivity with respect to l.

Additionally, given that all characters (plain and code-
word) move along a common trajectory, we can further
identify this common component by linearly fitting a tra-
jectory to their path. Note that the centers of the rotating
codeword characters still move along this trajectory. Ac-
cordingly, we use the distinctive rotation of the codeword
characters to identify any of their associated patterns by
simply searching for the trajectories with the largest de-
viation from the more common motion trajectory. This
identifies the pixels belonging to the codeword charac-
ters as well as the plain characters. Additionally, the
features on the identified codeword characters allow us
to obtain the specific color of the codeword characters
without knowing the color a priori (see Figure 5).

Knowing the position of the codeword characters al-
lows us to learn a foreground color model. We use
a Gaussian mixture model for the foreground learning,
which in our case has a single moment corresponding
to the foreground color.1 Additionally, given the above
identified salient features on the background, we also
learn a Gaussian mixture for the background, thereby
further separating the characters from the background.

At this point, we have isolated the trajectories of code-
word characters, and separated the codewords from the
background (see Figure 6). However, to decide which
salient features on the codeword characters belong to-
gether, we required additional trajectories. To acquire
these, we simply relax the constraint on the sharpness
of corners we care about (i.e., we lower the threshold
for the Harris corner detection algorithm) and rerun the

Figure 5: (Top): Initial optical flow. (Middle): salient points
with short trajectories in background are discarded. (Lower):
Trajectories on non-codeword characters are also discarded.

KLT-tracking on the new salient features. This yields
significantly more trajectories for use by our segmenta-
tion algorithm. Notice how dense the salient features are
in Figure 7. Note also that since the foreground extrac-
tion step provides patches that are not related to the back-
ground, we can automatically generate training samples
for our classifier, irrespective of the various backgrounds
the characters are contained in.

Figure 6: Example foreground extraction.

Figure 7: re-running tracking with a lower threshold on corner
quality: Left: before modification. Right: after modification.

Segmentation (Stage Ì)
To segment the derived trajectories into groups, we use k-
means clustering [23]. We chose this approach over other
considerations (e.g., mean-shift [37] based clustering, or

RANSAC [17] based clustering [51]) because of its sim-
plicity, coupled with the fact that we can take advantage
of our knowledge of the desired number of characters
(i.e., k), and use that to help guide the clustering proce-
dure. We cannot, however, apply the standard k-means
approach directly since it relies on Euclidean distances,
where each sample is a point. In our case, we need to take
the relationship between frames of the video sequence
into consideration, and so we must instead use each tra-
jectory as an observation. That is, we cluster the differ-
ent trajectories. However, this results in a non-Euclidean
space because different trajectories have different begin-
ning and ending frames. To address this problem, we
utilize the rigidity assumption [42] and define a distance
metric for trajectories that takes into consideration their
spatial distance, as well as the variation of their spatial
distance. The result is a robust technique that typically
converges within 5 iterations when k = 3, and 20 intera-
tions (on average) when k = 23. A sample output of this
stage is shown in Figure 8.

Figure 8: Left: before segmentation. Right: trajectories are
marked with different colors and bounding boxes are calculated
based on the center of the trajectories and the orientation of the
points. The red points denote areas with no trajectories.

4.3 Codeword Extraction and
Classification (Stage Í)

Given the center and orientation of each codeword char-
acter, the goal is to figure out exactly what that character
is. For this task, we extract a fixed-sized area around
each character (as in Figure 8), and supply that to our
classification stage. Before doing so, however, we refine
the patches by deleting pixels that are too close to the
trajectories of adjacent characters.

As mentioned earlier, we use a neural network for clas-
sifying the refined patches. A neural network is a mathe-
matical model or computational model that is inspired by
the structure of a biological neural network. The training
of a neural network is based on the notion of the possi-
bility of learning. Given a specific task to solve, and a
class of functions, learning in this context means using
a set of observations to find a function which solves the
task in some optimal sense.

Optimization: While the process outlined in stages Ê-
Í works surprisingly well, there are several opportuni-

ties for improvement. Perhaps one of the most natural
extensions is to utilize a feedback mechanism to boost
recognition accuracy. The idea we pursue is based on
the observation that an adversary can leverage her confi-
dence about what particular patches represent to improve
her overall ability to break the captcha. Specifically, we
find and block the character that we are most confident
about. The basic idea is that although we may not be able
to infer all the characters at once, it is very likely that we
can infer some of the characters. By masking the char-
acter that we are most confident about, we can simplify
the problem into one of decoding a codeword with fewer
characters; which is easier to segment and recognize.

Figure 9: Iterative decoding of a captcha.

The most confident character can be found using the
probability score provided by the classifier, although it
is non-trivial to do so without masking out too much of
the other characters. We solve this problem as follows.
In order to block a character, we try to match it with
templates of each character that can be gained by learn-
ing. One way to do that is to match scale-invariant fea-
ture transforms (SIFT) between the patch and a reference
template. While SIFT features can deal with scaling, ro-
tation and translation of characters, there are times when
some frames have insufficient SIFT features. Our solu-
tion is to find a frame with enough features to apply SIFT,
and then warp the template to mask the target character
in that frame. Once found, this frame is used as the ini-
tial position in an incremental alignment approach based
on KLT tracking. Essentially, we combine the benefits
of SIFT and KLT to provide a video sequence where the
character we are most confident about is omitted. At that
point, we rerun our attack, but with one fewer character.
This process is repeated until we have no characters left
to decode. This process is illustrated in Figure 9.

Runtime: Our implementation is based on a collection
of modules written in a mix of C++ and Matlab code.
We make extensive use of the Open Source Computer
Vision library (OpenCV). Our un-optimized code takes
approximately 30s to decode the three characters in a
MIOR captcha when the feedback loop optimization (in
stage Í) is disabled. With feedback enabled, processing
time increases to 250s. The bottleneck is in the incre-
mental alignment procedure (written in Matlab).

5 Evaluation

We now discuss the results of experiments we performed
on MIOR captchas. Specifically, the first set of experi-
ments are based on video sequences downloaded off the
demo page of NuCaptcha’s website. On each visit to the
demo page, a captcha with a random 3-character code-
word is displayed for 6 seconds before the video loops.
The displayed captchas were saved locally using a Fire-
fox plugin called NetVideoHunter. We downloaded 4500
captchas during November and December of 2011.

The collected videos contain captchas with all 19
backgrounds in use by NuCaptcha as of December 2011.
In each of these videos, the backgrounds are of moving
scenes (e.g., waves on a beach, kids playing baseball,
etc.) and the text in the foreground either moves across
the field of view or in-place. We painstakingly labeled
each of the videos by hand to obtain the ground truth.
We note that while NuCaptcha provides an API for ob-
taining captchas, we opted not to use that service as we
did not want to interfere with their service in any way. In
addition, our second set of experiments examine several
countermeasures against our attacks, and so for ethical
reasons, we opted to perform such experiments in a con-
trolled manner rather than with any in-the-wild experi-
mentation. These countermeasures are also evaluated in
our user study (§6).

5.1 Results

The naïve attack was analyzed on 4000 captchas. Due
to time constraints, the extended attack (with and with-
out the feedback optimization) were each analyzed on a
random sample of 500 captchas. To determine an appro-
priate training set size, we varied the number of videos as
well as the number of extracted frames and examined the
recognition rate. The results (not shown) show that while
accuracy steadily increased with more training videos
(e.g., 50 versus 100 videos), we only observed marginal
improvement when the number of training patches taken
from each video exceeded 1500. In the subsequent anal-
yses, we use 300 video sequences for training (i.e., 900
codeword characters) and for each detected character, we
select 2 frames containing that character (yielding 1800
training patches in total). We use dense SIFT descrip-
tors [44] as the features for each patch (i.e., a SIFT de-
scriptor is extracted for each pixel in the patch, and con-
catenated to form a feature vector). The feature vectors
are used to train the neural network. For testing, we
choose a different set of 200 captchas, almost evenly dis-
tributed among the 19 backgrounds. The accuracy of the
attacks (in §4) are given in Table 1.

The result indicate that the robustness of these MIOR
captchas are far weaker than one would hope. In par-

ticular, our automated attacks can completely decode the
captchas more than three quarters of the time. In fact,
our success rates are even higher than some of the OCR-
based attacks on CR-still captchas [7, 19, 32, 47]. There
are, however, some obvious countermeasures that de-
signers of MIOR captchas might employ.

5.2 Mitigation
To highlight some of the tensions that exists between
the security and usability of MIOR captchas, we explore
a series of possible mitigations to our attacks. In or-
der to do so, we generate video captchas that closely
mimic those from NuCaptcha. In particular, we built
a framework for generating videos with characters that
move across a background scene with constant velocity
in the horizontal direction, and move up and down har-
monically. Similar to NuCaptcha, the characters of the
codeword also rotate. Our framework is tunable, and all
the parameters are set to the defaults calculated from the
original videos from NuCaptcha (denoted Standard). We
refer the interested reader to Appendix A for more details
on how we set the parameters. Given this framework, we
explore the following defenses:
• Extended: the codeword consists of m > 3 random

characters moving across a dynamic scene.

• Overlapping: same as the Standard case (i.e., m =
3), except characters are more closely overlapped.

• Semi-Transparent: identical to the Standard case,
except that the characters are semi-transparent.

• Emerging objects: a different MIOR captcha where
the codewords are 3 characters but created using an
“Emerging Images” [31] concept (see below).

Figure 10: Extended case. Top: scrolling; bottom: in-place.

Increasing the number of random characters shown in
the captcha would be a natural way to mitigate our attack.
Hence, the Extended characters case is meant to investi-
gate the point at which the success rate of our attacks fall

Attack Single Character 3-Character
Strategy Accuracy Accuracy
Naïve 68.5% (8216/12000) 36.3% (1450/4000)

Enhanced (no feedback) 90.0% (540/600) 75.5% (151/200)
Enhanced (with feedback) 90.3% (542/600) 77.0% (154/200)

Table 1: Reconstruction accuracy for various attacks.

below a predefined threshold. An example is shown in
Figure 10. Similarly, we initially thought that increas-
ing the overlap between consecutive characters (i.e., the
Overlapping defense, Fig. 11) might be a viable alterna-
tive. We estimate the degree that two characters overlap
by the ratio of the horizontal distance of their centers and
their average width. That is, suppose that one character
is 20 pixels wide, and the other is 30 pixels wide. If the
horizontal distance of their centers is 20, then their over-
lap ratio is computed as 20/ 20+30

2 = 0.8. The smaller
this overlap ratio, the more the characters overlap. A ra-
tio of 0.5 means that the middle character is completely
overlapped in the horizontal direction. In both the origi-
nal captchas from NuCaptcha and our Standard case, the
overlap ratio is 0.95 for any two adjacent characters.

Figure 11: Overlapping characters (with ratio = 0.49).

The Semi-Transparent defense is an attempt to break
the assumption that the foreground is of constant color.
In this case, foreground extraction (stage Ë) will be dif-
ficult. To mimic this defense strategy, we adjust the
background-to-foreground pixel ratio. An example is
shown in figure 12.

Figure 12: Semi-transparent: 80% background to 20% fore-
ground pixel ratio. (Best viewed in color.)

The final countermeasure is based on the notion of
Emerging Images proposed by Mitra et al. [31]. Emer-
gence refers to “the unique human ability to aggregate
information from seemingly meaningless pieces, and to
perceive a whole that is meaningful” [31].2 The con-
cept has been exploited in Computer Graphics to prevent

automated tracking by computers, while simultaneously
allowing for high recognition rates in humans because of
our remarkable visual system. We apply the concepts
outlined by Mitra et al. [31] to generate captchas that
are resilient to our attacks. The key differences between
our implementation and the original paper is that our in-
put is 2D characters instead of 3D objects, and we do
not have the luxury of incorporating shadow information.
Our Emerging captchas are constructed as follows:

fram
e i

fram
e i+1

fram
e i+2

creation of a fram
e

(a) (b)

Figure 13: Emerging captcha. (a) Top: noisy background
frame. Middle: derivative of foreground image. Bottom: single
frame for an Emerging captcha. (b) Successive frames.

1. We build a noisy frame Ibg by creating an image
with each pixel following a Gaussian distribution.
We blur the image such that the value of each pixel
is related to nearby pixels. We also include time cor-
respondence by filtering in the time domain. That is,
each frame is a mixture of a new noisy image and
the last frame.

2. We generate an image I f g similar to that in Nu-
Captcha. We then find the edges in the image by
calculating the norm of derivatives of the image.

3. We combine Ibg and I f g by creating a new im-
age I where each pixel in I is defined as I(x,y) :=
Ibg(x,y) ∗ exp(I f g

const), where exp(x) is the exponen-
tial function. In this way, the pixels near the bound-
ary of characters in I are made more noisy than
other pixels.

4. We define a constant threshold t < 0. All pixel val-
ues in I that are larger than t are made white. All

the other pixels in I are made black.

The above procedure results in a series of frames
where no single frame contains the codeword in a way
that is easy to segment. The pixels near the boundaries
of the characters are also more likely to be blacker than
other pixels, which the human visual system somehow
uses to identify the structure from motion. This feat re-
mains challenging for computers since the points near the
boundaries change color randomly, making it difficult, if
not impossible, to track, using existing techniques. An
illustration is shown in Figure 13. To the best of our
knowledge, we provide the first concrete instantiation of
the notion of Emerging Images applied to captchas, as
well as a corresponding lab-based usability study (§6).

We refer interested readers to http://www.cs.
unc.edu/videocaptcha/ for examples of the mit-
igation strategies we explored.

5.2.1 Results

We now report on the results of running attacks on
captchas employing the aforementioned defenses. Fig-
ure 14 depicts the results for the Extended defense strat-
egy. In these experiments, we generated 100 random
captchas for each m ∈ [3,23]. Our results clearly show
that simply increasing the codeword length is not neces-
sarily a viable defense. In fact, even at 23 characters, our
success rate is still 5%, on average.

Figure 14: Attack success as a function of codeword length.

Figure 15 shows the results for the Overlapping de-
fense strategy. As before, the results are averaged over
100 sequences per point. The graph shows that the suc-
cess rate drops steadily as the overlap ratio decreases (de-
noted as “sensitivity” level in that plot). Interestingly,
NuCaptcha mentions that this defense strategy is in fact
one of the security features enabled by its behavioral
analysis engine. The images provided on their website
for the “very secure” mode, however, have an overlap ra-
tio of 0.78, which our attacks would still be able to break

more than 50% of the time.3 Our success rate is still rel-
atively high (at 5%) even when the overlap ratio is as low
as 0.49. Recall that, at that point, the middle character is
100% overlapped, and others are 51% overlapped.

Figure 15 also shows the results for the Semi-
Transparent experiment. In that case, we varied the
transparency of the foreground pixel from 100% down
to 20%. Even when the codewords are barely visible (to
the human eye), we are still able to break the captchas
5% of the time. An example of one such captcha (with a
background to foreground ratio of 80 to 20 percent) was
shown earlier in Figure 12.

Figure 15: Attack success rate against Overlapping and Semi-
Transparent defenses. Sensitivity refers to the overlap ratio
(circles) or the background-to-foreground ratio (squares).

Lastly, we generated 100 captchas based on our imple-
mentation of the Emerging Images concept. It comes as
no surprise that the attacks in this paper were not able to
decode a single one of these challenges — precisely be-
cause these captchas were specifically designed to make
optical flow tracking and object segmentation difficult.
From a security perspective, these MIOR captchas are
more robust than the other defenses we examined. We
return to that discussion in §7.

5.2.2 Discussion

The question remains, however, whether for any of the
defenses, parameters could be tuned to increase the ro-
bustness and still retain usablility. We explore precisely
that question next. That said, the forthcoming analysis
raises interesting questions, especially as it relates to the
robustness of captchas. In particular, there is presently
no consensus on the required adversarial effort a captcha
should present, or the security threshold in terms of suc-
cess rate that adversaries should be held below. For ex-
ample, Chellapilla et al. [8] state: “automated attacks
should not be more than 0.01% successful but the human
success rate should be at least 90%”. Others argue that
“if it is at least as expensive for an attacker to break the

challenge by machine than it would be to pay a human to
take the captcha, the test can be considered secure” [22].
Zhu et al. [53] use the metric that the bot success rate
should not exceed 0.6%.

In the course of our pilot studies, it became clear
that if the parameters for the Extended, Overlapping,
and Semi-Transparent countermeasures are set too strin-
gently (e.g., to defeat automated attacks 99% of the
time), then the resulting MIOR captchas would be ex-
ceedingly difficult for humans to solve. Therefore, to
better measure the tension between usability and secu-
rity, we set the parameters for the videos (in §6) to values
where our attacks have a 5% success rate, despite that be-
ing intolerably high for practical security. Any captcha
at this parametrization, which is found to be unusable, is
thus entirely unviable.

6 User study

We now report on an IRB-approved user study with 25
participants that we conducted to assess the usability of
the aforementioned countermeasures. If the challenges
produced by the countermeasures prove too difficult for
both computers and humans to solve, then they are not
viable as captcha challenges. We chose a controlled
lab study because besides collecting quantitative perfor-
mance data, it gave us the opportunity to collect partici-
pants’ impromptu reactions and comments, and allowed
us to interview participants about their experience. This
type of information is invaluable in learning why cer-
tain mitigation strategies are unacceptable or difficult for
users and learning which strategies are deemed most ac-
ceptable. Additionally, while web-based or Mechanical
Turk studies may have allowed us to collect data from
more participants, such approaches lack the richness of
data available when the experimenter has the opportunity
to interact with the participants one-on-one. Mechani-
cal Turk studies have previously been used in captcha
research [5] when the goal of the studies are entirely
performance-based. However, since we are studying new
mitigation strategies, we felt that it was important to
gather both qualitative and quantitative data for a more
holistic perspective.

6.1 Methodology

We compared the defenses in §5.2 to a Standard ap-
proach which mimics NuCaptcha’s design. In these
captchas the video contains scrolling text with 2-3 words
in white font, followed by 3 random red characters that
move along the same trajectory as the white words. Simi-
lar to NuCaptcha, the red characters (i.e., the codewords)
also independently rotate as they move. For the Extended

strategy, we set m = 23. All 23 characters are continu-
ously visible on the screen. During pilot testing, we also
tried a scrolling 23-character variation of the Extended
scheme. However, this proved extremely difficult for
users to solve and they voiced strong dislike (and out-
rage) for the variation. For the Overlapping strategy, we
set the ratio to be 0.49. Recall that at this ratio, the mid-
dle character is overlapped 100% of the time, and the
others are 51% overlapped. For the Semi-Transparent
strategy, we set the ratio to be 80% background and 20%
foreground. For all experiments, we use the same alpha-
bet (of 20 characters) in NuCaptcha’s original videos.

A challenge refers to a single captcha puzzle to be
solved by the user. Each challenge was displayed on a
6-second video clip that used a canvas of size 300×126
and looped continuously. This is the same specification
used in NuCaptcha’s videos. Three different HD video
backgrounds (of a forest, a beach, and a sky) were used.
Some examples are shown in Figure 16. Sixty chal-
lenges were generated for each variation (20 for each
background, as applicable).

We also tested the Emerging strategy. The three-
character codeword was represented by black and white
pixel-based noise as described in §5.2. Sixty challenges
were generated using the same video parameters as the
other conditions.

The twenty-five participants were undergraduate,
graduate students, staff and faculty (15 males, 10 fe-
males, mean age 26) from a variety of disciplines. A
within-subjects experimental design was used, where
each participant had a chance to complete a set of 10
captchas for each strategy. The order of presentation for
the variations was counterbalanced according to a 5× 5
Latin Square to eliminate biases from learning effects;
Latin Squares are preferred over random ordering of con-
ditions because randomization could lead to a situation
where one condition is favored (e.g., appearing in the
last position more frequently than other conditions, giv-
ing participants more chance to practice). Within each
variation, challenges were randomly selected.

A simple web-based user interface was designed
where users could enter their response in the textbox and
press submit, could request a new challenge, or could
access the help file. Indication of correctness was pro-
vided when users submitted their responses, and users
were randomly shown the next challenge in the set. Im-
mediately after completing the 10 challenges for a vari-
ation, users were asked to complete a paper-based ques-
tionnaire collecting their perception and opinion of that
variation. At the end of the session, a brief interview was
conducted to gather any overall comments. Each partici-
pant completed their session one-on-one with the exper-
imenter. A session lasted at most 45 minutes and users
were compensated $15 for their time.

(a) Forest background (b) Beach background (c) Sky background

Figure 16: Three backgrounds used for the challenges, shown for the Semi-Transparent variant.

6.2 Data Collection

The user interface was instrumented to log each user’s
interactions with the system. For each challenge, the
user’s textual response, the timing information, and the
outcome was recorded. A challenge could result in three
possible outcomes: success, error, or skipped. Question-
naire and interview data was also collected.

6.3 Analysis

Our analysis focused on the effects of five different
captcha variants on outcomes and solving times. We also
analyzed and reviewed questionnaire data representing
participant perceptions of the five variants. We used sev-
eral statistical tests and the within-subjects design of our
study impacted our choice of statistical tests; in each case
the chosen test accounted for the fact that we had multi-
ple data points from each participant. In all of our tests,
we chose p < 0.05 as the threshold for determining sta-
tistical significance.

One-way repeated-measures ANOVAs [25] were used
to evaluate aggregate differences between the means for
success rates and times. When the ANOVA revealed
a significant difference, we used post-hoc Tukey HSD
tests [27] to determine between which pairs the differ-
ences occurred. Here, we were interested only in whether
the four proposed mitigation strategies differed from the
Standard variant, so we report only on these four cases.

Our questionnaires used Likert-scale responses to as-
sess agreement with particular statements (1 - Strongly
Disagree, 10 - Strongly Agree). To compare this ordinal
data, we used the non-parametric Friedman’s Test [27].
When overall significant differences were found, we
used post-hoc Pairwise Wilcoxon tests with Bonferroni
correction to see which of the four proposed variants dif-
fered from the Standard variant.

Outcomes: Participants were presented with 10 chal-
lenges of each variant. Figure 17 shows a stacked bar
graph representing the mean number of success, error,
and skipped outcomes. To be identified as a Success,
the user’s response had to be entirely correct. An Er-
ror occurred when the user’s response did not match the
challenge’s solution. A Skipped outcome occurred when
the participant pressed the “Get A New Challenge” but-

ton and was presented with a different challenge. We
observe differences in the outcomes, with the Standard
variant being most successful and the Semi-Transparent
variant resulting in the most skipped outcomes.

Figure 17: Mean number of success, error, and skipped out-
comes for Standard, Extended, Overlapping, Semi-Transparent
and Emerging variants, respectively.

For the purposes of our statistical tests, errors and
skipped outcomes were grouped since in both cases the
user was unable to solve the challenge. Each participant
was given a score comprising the number of successful
outcomes for each variant (out of 10 challenges).4

A one-way repeated-measure ANOVA showed signif-
icant differences between the five variants (F(4,120) =
29.12, p < 0.001). We used post-hoc Tukey HSD tests
to see whether any of the differences occurred between
the Standard variant and any of the other four variants.
The tests showed a statistically significant difference be-
tween all pairs except for the Standard⇔Emerging pair.
This means that the Extended, Overlapping, and Semi-
Transparent variants had a significantly lower number
of successes than the Standard variant, while Emerging
variant showed no difference.

Time to Solve: The time to solve was measured as the
time between when the challenge was displayed to when
the response was received. This included the time to type
the answer (correctly or incorrectly), as well as the time it
took the system to receive the reply (since the challenges
were served from our local server, transmission time was
negligible). Times for skipped challenges were not in-
cluded since users made “skip” decisions very quickly
and this may unfairly skew the results towards shorter
mean times. We include challenges that resulted in er-
rors because in these cases participants actively tried to

Figure 18: Time taken to solve the MBOR captchas.

solve the challenge. The time distributions are depicted
in Figure 18 using boxplots. Notice that the Extended
variant took considerably longer to solve than the others.

We examined the differences in mean times using
a one-way repeated-measure ANOVA. The ANOVA
showed overall significant differences between the five
variants (F(4,120) = 112.95, p < 0.001). Once again,
we compared the Standard variant to the others in
our post-hoc tests. Tukey HSD tests showed no sig-
nificant differences between the Standard⇔Emerging
or Standard⇔Overlapping pairs. However, signifi-
cant differences were found for the Standard⇔Semi-
Transparent and Standard⇔Extended pairs. This means
that the Semi-Transparent and Extended variants took
significantly longer to solve than the Standard variant,
but the others showed no differences.

Skipped outcomes: The choice of background ap-
pears to have especially impacted the usability of the
Semi-Transparent variant. Participants most frequently
skipped challenges for the Semi-Transparent variant and
found the Forest background especially difficult to use.
Many users would immediately skip any challenge that
appeared with the Forest background because the trans-
parent letters were simply too difficult to see. For the
Semi-Transparent variant, 35% of challenges presented
on the Forest background were skipped, compared 17-
18% of challenges using the other two backgrounds. Par-
ticipants’ verbal and written comments confirm that they
found the Forest background very difficult, with some
users mentioning that they could not even find the letters
as they scrolled over some parts of the image.

Errors: Figure 19 shows the distribution of errors.
It shows that the majority of errors were made on the
middle characters of the challenge. We also examined
the types of errors, and found that most were mistakes
between characters that have similar appearances. The
most commonly confused pairs were: S/5, P/R, E/F, V/N,
C/G, and 7/T. About half of the errors for the Extended
variant were due to confusing pairs of characters, while

the other half involved either missing letters or including
extra ones. For the other variants, nearly all errors were
due to confusing pairs of characters.

Figure 19: Location of errors within the codewords.

User perception: Immediately after completing the
set of challenges for each variant, participants completed
a Likert-scale questionnaire to collect their opinion and
perception of that variant. For each variant, participants
were asked to rate their agreement with the following
statements:

1. It was easy to accurately solve the challenge

2. The challenges were easy to understand

3. This captcha mechanism was pleasant to use

4. This captcha mechanism is more prone to mistakes
than traditional text-based captchas

Figure 20 shows boxplots representing users’ re-
sponses. Since Q.4 was negatively worded, responses
were inverted for easier comparisons. In all cases, higher
values on the y-axis indicate a more favorable response.

The results show that users clearly preferred the Stan-
dard variant and rated the others considerably lower
on all subjective measures. Friedman’s Tests showed
overall significant differences for each question (p <
0.001). Pairwise Wilcoxon Tests with Bonferroni correc-
tion were used to assess differences between the Stan-
dard variant and each of the other variants. Significant
differences were found between each pair compared.
The only exceptions are that users felt that the Extended
and Emerging variants were no more difficult to under-
stand (Question 2) than the Standard variant. This result
appears to contradict the results observed in Figure 20
and we believe that this is because the Wilcoxon test
compares ranks rather than means or medians.

Comments: Participants had the opportunity to pro-
vide free-form comments about each variant and offer
verbal comments to the experimenter. Samples are in-
cluded in Appendix B. Participants clearly preferred the
Standard variant, and most disliked the Extended variant.

(a) Accuracy (b) Easy to understand (c) Pleasant to use (d) More error-prone (responses
inverted)

Figure 20: Likert-scale responses: 1 is most negative, 10 is most positive.

Of the remaining schemes, the Emerging variant seemed
most acceptable although it also had its share of negative
reactions (e.g., one subject found it to be hideous).

7 Summary and Concluding Remarks

Our attack inherently leverages the temporal informa-
tion in the moving-image object recognition (MIOR)
captchas, and also exploits the fact that only object
recognition of known objects is needed. Our methods
also rely on a reasonably consistent appearance or slowly
varying appearance over time. That said, they can be
applied to any set of known objects or narrowly de-
fined objects under affine transformations that are known
to work well with detection methods in computer vi-
sion [45]. For the specific case of NuCaptcha, we showed
that not only are there inherent weaknesses in the current
MIOR captcha design, but that several obvious counter-
measures (e.g., extending the length of the codeword)
are not viable attack countermeasures. More importantly,
our work highlights the fact that the choice of underlying
hard problem by NuCaptcha’s designers was misguided;
its particular implementation falls into a solvable sub-
class of computer vision problems.

In the case of emergent captchas, our attacks fail
for two main reasons. First, in each frame there are
not enough visual cues that help distinguish the charac-
ters from the background. Second, the codewords have
no temporally consistent appearance. Combined, these
two facts pose significant challenges to existing com-
puter vision methods, which typically assume reason-
ably consistent appearance and visually distinctive fore-
grounds [52]. Nevertheless, our user study showed that
people had little trouble solving these captchas. This
bodes well for emergent captchas—per today’s attacks.

Looking towards the future, greater robustness would
result if MIOR captchas required automated attacks to
perform classification, categorization of classes with
large inner class variance, or to identify higher level se-
mantics to understand the presented challenge. Consider,
for example, the case where the user is presented with
two objects (a person and a truck) at the same scale, and

asked to identify which one is larger. To succeed, the
automated attack would need to determine the objects
(without prior knowledge of what the objects are of) and
then understand the relationship. Humans can perform
this task because of the inherent priors learned in daily
life, but this feat remains a daunting problem in com-
puter vision. Therefore, this combination seems to of-
fer the right balance and underscores the ideas put forth
by Naor [34] and von Ahn et al. [1]—i.e., it is prudent
to employ hard (and useful) underlying AI problems in
captchas since it leads to a win-win situation: either the
captcha is not broken and there is a way to distinguish
between humans and computers, or it is broken and a
useful problem is solved.

Acknowledgments

The authors thank Pierre Georgel, Joseph Tighe, and Avi
Rubin for insightful discussions about this work, and for
valuable feedback on an earlier draft of this manuscript.
We are also especially grateful to Fletcher Fairey (of the
Office of University Counsel at Chapel Hill), and Cindy
Cohn and Marcia Hofmann (of the Electronic Frontier
Foundation) for their guidance and assistance in making
our findings available to NuCaptcha in a timely manner.

Sonia Chiasson holds a Canada Research Chair in Hu-
man Oriented Computer Security and Paul Van Oorschot
holds a Canada Research Chair in Authentication and
Computer Security; both acknowledge the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) for funding the Chairs and Discovery Grants,
as well as funding from NSERC ISSNet. This work
is also supported by the National Science Foundation
(NSF) under award number 1148895.

Notes
1In the case where the foreground characters have varying appear-

ance, we simply use multiple modes.
2Readers can view videos of the Emerging Images concept [31]

at http://graphics.stanford.edu/~niloy/research/
emergence/emergence_image_siga_09.html.

3See the Security Features discussed at http://www.
nucaptcha.com/features/security-features, 2012.

4One participant opted to view only six challenges in each of the
Extended and Emerging variants. We count the remaining four as skips.

References
[1] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:

using hard AI problems for security. In Eurocrypt, pages 294–
311, 2003.

[2] A. Basso and F. Bergadano. Anti-bot strategies based on hu-
man interactive proofs. In P. Stavroulakis and M. Stamp, editors,
Handbook of Information and Communication Security, pages
273–291. Springer, 2010.

[3] E. Bursztein. How we broke the NuCaptcha video scheme
and what we proposed to fix it. See http://elie.im/
blog/security/how-we-broke-the-nucaptcha\
-video-scheme-and-what-we-propose-to-fix-it/,
Accessed March, 2012.

[4] E. Bursztein and S. Bethard. DeCAPTCHA: breaking 75% of
ebay audio CAPTCHAs. In Proceedings of the 3rd USENIX
Workshop on Offensive Technologies, 2009.

[5] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Juraf-
sky. How good are humans at solving CAPTCHAs? a large scale
evaluation. In IEEE Symposium on Security and Privacy, pages
399–413, 2010.

[6] E. Bursztein, R. Beauxis, H. Paskov, D. Perito, C. Fabry, and
J. C. Mitchell. The failure of noise-based non-continuous audio
CAPTCHAs. In IEEE Symposium on Security and Privacy, pages
19–31, 2011.

[7] E. Bursztein, M. Martin, and J. Mitchell. Text-based CAPTCHA
strengths and weaknesses. In Proceedings of the 18th ACM con-
ference on Computer and communications security, pages 125–
138, 2011.

[8] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski. De-
signing human friendly human interaction proofs (hips). In ACM
Conference on Human Factors in Computing Systems, pages
711–720, 2005.

[9] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski.
Building segmentation based human-friendly human interaction
proofs (hips). In Human Interactive Proofs, Second International
Workshop, pages 1–26, 2005.

[10] J. Cui, W. Zhang, Y. Peng, Y. Liang, B. Xiao, J. Mei, D. Zhang,
and X. Wang. A 3-layer Dynamic CAPTCHA Implementation.
In Workshop on Education Technology and Computer Science,
volume 1, pages 23–26, march 2010.

[11] J.-S. Cui, J.-T. Mei, X. Wang, D. Zhang, and W.-Z. Zhang. A
CAPTCHA Implementation Based on 3D Animation. In Inter-
national Conference on Multimedia Information Networking and
Security, volume 2, pages 179 –182, nov. 2009.

[12] J.-S. Cui, J.-T. Mei, W.-Z. Zhang, X. Wang, and D. Zhang. A
CAPTCHA Implementation Based on Moving Objects Recogni-
tion Problem. In International Conference on E-Business and
E-Government, pages 1277–1280, may 2010.

[13] J. J. DiCarlo and D. D. Cox. Untangling invariant object recog-
nition. Trends in Cognitive Sciences, 11:333–341, 2007.

[14] J. Driver and G. Baylis. Edge-assignment and figure-ground seg-
mentation in short-term visual matching. Cognitive Psychology,
31:248–306, 1996.

[15] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. Captcha smug-
gling: hijacking web browsing sessions to create captcha farms.
In Proceedings of the ACM Symposium on Applied Computing,
pages 1865–1870, 2010.

[16] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra: a
CAPTCHA that exploits interest-aligned manual image catego-
rization. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 366–374, 2007.

[17] M. Fischler and R. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography. Comm. of the ACM, 24(6):381–395,
1981.

[18] N. Friedman and S. Russell. Image segmentation in video se-
quences: A probabilistic approach. University of California,
Berkeley, 94720, 1776.

[19] P. Golle. Machine learning attacks against the Asirra CAPTCHA.
In Proceedings of the ACM Conference on Computer and Com-
munications Security, pages 535–542, 2008.

[20] K. Grill-Spector and N. Kanwisher. Visual recognition: as soon
as you know it is there, you know what it is. Psychological Sci-
ence, 16(2):152–160, 2005.

[21] C. Harris and M. Stephens. A combined corner and edge de-
tection. In Proceedings of The Fourth Alvey Vision Conference,
volume 15, pages 147–151, 1988.

[22] J. M. G. Hidalgo and G. Alvarez. CAPTCHAs: An Artificial In-
telligence Application to Web Security. Advances in Computers,
83:109–181, 2011.

[23] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM
computing Surveys, 31(3):264–323, 1999.

[24] K. A. Kluever and R. Zanibbi. Balancing usability and security
in a video CAPTCHA. In Proceedings of the 5th Symposium on
Usable Privacy and Security, pages 1–14, 2009.

[25] J. Lazar, J. H. Feng, and H. Hochheiser. Research Methods in
Human-Computer Interaction. John Wiley and Sons, 2010.

[26] W.-H. Liao and C.-C. Chang. Embedding information within dy-
namic visual patterns. In Multimedia and Expo, IEEE Interna-
tional Conference on, volume 2, pages 895–898, june 2004.

[27] R. Lowry. Concepts and Applications of Inferential Statistics.
Vassar College, http://faculty.vassar.edu/lowry/
webtext.html, 1998.

[28] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 674–679, 1981.

[29] D. Marr. Vision: a computational investigation into the human
representation and processing of visual information. W. H. Free-
man, San Francisco, 1982.

[30] D. Marr and T. Poggio. A computational theory of human stereo
vision. Proceedings of the Royal Society of London. Series B,
Biological Sciences, 204(1156):301–328, 1979.

[31] N. J. Mitra, H.-K. Chu, T.-Y. Lee, L. Wolf, H. Yeshurun, and
D. Cohen-Or. Emerging images. ACM Transactions on Graphics,
28(5), 2009.

[32] G. Mori and J. Malik. Recognizing objects in adversarial clutter:
breaking a visual CAPTCHA. In Computer Vision and Pattern
Recognition, volume 1, pages 134 –141, june 2003.

[33] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.
Voelker, and S. Savage. Re: CAPTCHAs-understanding
CAPTCHA-solving services in an economic context. In USENIX
Security Symposium, pages 435–462, 2010.

[34] M. Naor. Verification of a human in the loop or identification via
the Turing test, 1996.

[35] NuCaptcha. Whitepaper: NuCaptcha & Traditional Captcha,
2011. http://nucaptcha.com.

[36] A. Oliva and A. Torralba. The role of context in object recogni-
tion. Trends in Cognitive Sciences, 11(12):520 – 527, 2007.

[37] S. Ray and R. Turi. Determination of number of clusters in k-
means clustering and application in colour image segmentation.
In Proceedings of the International conference on advances in
pattern recognition and digital techniques, pages 137–143, 1999.

[38] M. Shirali-Shahreza and S. Shirali-Shahreza. Motion
CAPTCHA. In Conference on Human System Interactions, pages
1042–1044, May 2008.

[39] P. Simard, D. Steinkraus, and J. Platt. Best practices for convo-
lutional neural networks applied to visual document analysis. In
Proceedings of the Seventh International Conference on Docu-
ment Analysis and Recognition, volume 2, pages 958–962, 2003.

[40] Y. Soupionis and D. Gritzalis. Audio CAPTCHA: Existing so-
lutions assessment and a new implementation for voip telephony.
Computers & Security, 29(5):603–618, 2010.

[41] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the
human visual system. Nature, 381(6582):520–522, 1996.

[42] S. Ullman. Computational studies in the interpretation of struc-
ture and motion: Summary and extension. In Human and Ma-
chine Vision. Academic Press, 1983.

[43] S. Ullman. High-Level Vision: Object Recognition and Visual
Cognition. The MIT Press, 1 edition, July 2000.

[44] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable li-
brary of computer vision algorithms. In Proceedings of the inter-
national conference on Multimedia, pages 1469–1472, 2010.

[45] P. A. Viola and M. J. Jones. Rapid object detection using a
boosted cascade of simple features. In Computer Vision and Pat-
tern Recognition, 2001.

[46] L. von Ahn, M. Blum, and J. Langford. Telling humans and com-
puters apart automatically. Commun. ACM, 47:56–60, February
2004.

[47] J. Yan and A. S. E. Ahmad. Breaking visual CAPTCHAs with
naive pattern recognition algorithms. In ACSAC, pages 279–291,
2007.

[48] J. Yan and A. S. E. Ahmad. A low-cost attack on a microsoft
CAPTCHA. In ACM Conference on Computer and Communica-
tions Security, pages 543–554, 2008.

[49] J. Yan and A. S. E. Ahmad. Usability of CAPTCHAs or usability
issues in CAPTCHA design. In SOUPS, pages 44–52, 2008.

[50] J. Yan and A. El Ahmad. CAPTCHA robustness: A security
engineering perspective. Computer, 44(2):54 –60, feb. 2011.

[51] J. Yan and M. Pollefeys. Articulated motion segmentation using
RANSAC with priors. Dynamical Vision, pages 75–85, 2007.

[52] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.
ACM Comput. Surv., 38, December 2006.

[53] B. B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, and
K. Cai. Attacks and design of image recognition CAPTCHAs.
In ACM Conference on Computer and Communications Security,
pages 187–200, 2010.

A Parameters for video generation
Similar to NuCaptcha’s videos, our sequences have letters that move
across a background scene with constant velocity in the horizontal di-
rection, and move up and down harmonically (i.e., y(t) = A∗ sin(ωt +
ψ), y is the vertical position of the letter, t is the frame id, and A,ω,ψ
are adjustable parameters). The horizontal distance between two letters
is a function of their average width. If their widths are width1,width2,
the distance between their centers are set to be α ∗ width1+width2

2 , where
α is an adjustable parameter that indicates how much two letters over-
lap. Our letters also rotate and loop around. The angleθ to which a
letter rotates is also decided by a sin function θ = θ0 ∗ sin(ωθ t +ψθ),
where θ0,ωθ ,ψθ are adjustable parameters. For the standard case, we
set the parameters the same as in NuCaptcha’s videos. We adjust these
parameters based on the type of defenses we explore (in Section 5.2).

B Comments from User Study
Table 2 highlights some of the free-form responses written on the ques-
tionnaire used in our study.

Variant Comments
Standard - User friendly

- It was too easy
- Much easier than traditional captchas

Extended - My mother would not be able to solve these
- Giant Pain in the Butt! Sheer mass of text was
overwhelming and I got lost many times
- Too long! I would prefer a shorter text
- It was very time consuming, and is very prone to
mistakes

Overlapping - Letters too bunched – several loops needed to de-
cipher
- Takes longer because I had to wait for the letter to
move a bit so I can see more of it
- Still had a dizzying affect. Not pleasant
- Some characters were only partially revealed, ‘Y’
looked like a ‘V’

Semi-
Transparent

- Tree background is unreadable, any non-solid
background creates too much interference
- With some backgrounds I almost didn’t realize
there were red letters
- It was almost faded and very time consuming. I
think I made more mistakes in this mechanism

Emerging - Not that complicated
- I’d feel dizzy after staring at it for more than 1 min
- It was hideous! Like an early 2000s website. But
it did do the job. It made my eyes feel ‘fuzzy’ after
a while
- It was good, better than the challenges with line
through letters

Table 2: Sample participant comments for each variant

