
CASE-FX: Feature Modeling Support in an OO CASE Tool
Alain Forget

School of Computer Science
& Human-Oriented Technology Lab

Carleton University

aforget@scs.carleton.ca

Dave Arnold
School of Computer Science

Carleton University

darnold@scs.carleton.ca

Sonia Chiasson
School of Computer Science

& Human-Oriented Technology Lab
Carleton University

chiasson@scs.carleton.ca

ABSTRACT
Generative Programming advocates developing a family of
systems rather than a set of single systems. Feature modeling can
assist in supporting the development of such software product
lines through software reuse. To our knowledge, CASE-FX is the
first implementation of state-level feature modeling support
within a CASE tool.

Keywords
CASE tools, feature modeling, Rational Rose RealTime.

1. INTRODUCTION
Generative Programming [4] advocates developing a family of
systems rather than a set of individual systems in order to save
development time and resources. Feature modeling is used to
define a system family’s features, which are the points of
variability amongst the different instances within a system family.
Instances of the system family can then be generated by varying
the set of enabled feature values while maintaining the same core.

We implemented CASE-FX, a feature modeling add-in for
Rational Rose RealTime [5]. Our goal was to demonstrate how
feature modeling can be implemented in a CASE tool. CASE-FX
bridges the gap between theory and application, being the first
tool to support feature modeling at the state-level, to our
knowledge.

2. BACKGROUND
Czarnecki and Eisenecker [4] assert that object-oriented (OO)
technology still leaves new opportunities to support reuse and
configurability. They propose a system family approach wherein
the product architecture is streamlined through domain analysis
and design, establishing features, feature values, and
configuration rules that can be implemented using generated
components. Configuration rules consist of domain-imposed
constraints that must be enforced upon the selection of feature
values both within and across individual features.

Feature modeling can be described using the adapted feature
diagram of a Car [4] provided in Figure 1. As shown, a Car must
have a Body, Transmission (whose feature value is either

Automatic or Manual, but not both), and an Engine (Electric, Gas,
or both). It also has an optional Trailer Coupling. We distinguish
between features and feature values in this project to prevent a
theoretical infinite cycle of features within features.

Figure 1. An example feature diagram of a Car [4]

Existing work [2,3] in software product line engineering applies
software patterns, organizational workflows, and similar macro-
level solutions to the same software reuse paradigm described by
Czarnecki and Eisenecker. Our approach differs in that it instead
provides support at a lower, state machine level.

Rational Rose RealTime (Rose-RT) [5] is a CASE tool with
which UML constructs can be drawn, converted into source code,
compiled, and executed. Additionally, Rose-RT add-ins can be
developed using its Extensibility Interface (RRTEI).

3. CASE-FX
CASE-FX supports feature modeling by allowing Rose-RT model
developers to add, edit, and remove features and their values, as
well as specify configuration rules. It is implemented as an add-in
for Rose-RT version 6.3.
Overview. Figure 2 illustrates CASE-FX’s interaction with Rose-
RT. Developers define the initial system model as usual in Rose-
RT. Features and feature values are defined in CASE-FX, as well
as configuration rules describing the allowable system
configurations. Transitions in the Rose-RT model’s state
machines can then be tagged with the feature values they support.
When building the model, CASE-FX ensures that only the chosen
sets of feature values are active in the current instance of the
system. CASE-FX extends Rose-RT’s functionality by handling
the semantics of the feature modeling constructs, storing the
additional data in the existing Rose-RT model file.

User Interface. CASE-FX provides a standard form-based user
interface for defining the features, feature values, and
configuration rules (for an example, see Figure 3). The same
interface is also used to enable the appropriate feature values for
the current instance of the system.

Copyright is held by the author/owner. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is
granted without fee.

Submitted to the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) 2007, October 21-25,
2007, Montréal, QC, Canada

Figure 2. Flow diagram of CASE-FX working with Rose-RT

Configuration Rules. CASE-FX uses an EBNF grammar to
specify configuration rules. Figure 3 illustrates how configuration
rules are managed in CASE-FX. The rules are interpreted using
recursive-descent parsing [1]. The EBNF grammar is syntactically
similar to fundamental C++, which should make it familiar to
most developers. If a syntactically incorrect rule is entered,
CASE-FX will notify the developer immediately where in the rule
the error is located.

Figure 3. An example configuration rule shown in CASE-FX

Selection Rules. Each feature in CASE-FX has a special type of
configuration rule known as a selection rule. Selection rules
define how many of a feature’s feature values may be selected at
any given time. This rule is set after a feature and its values are
defined. The possible selection rules are: “one”, “one or more”,
“zero or more”, and “zero or one”.

Building CASE-FX-Enhanced Rose-RT Models. As previously
noted, state machine transitions must be tagged with the feature
values they support. Before building their model, Rose-RT
developers must tell CASE-FX to pre-build the model. Pre-
building first ensures that the selected feature values do not
violate the configuration rules. CASE-FX then sets the guards for
all transitions with no enabled feature values to false and appends
the suffix “_DISABLED” to each excluded transition’s name.
Next, developers build the model (using the standard Rose-RT
build function), assured that only the selected feature values will
be used in this built instance of the system family. After the build
is completed, developers must post-build, which removes the
“_DISABLED” suffixes from excluded transitions and resets the
false guards to their previous values.

Generating System Family Instances. After the initial creation
of features, feature values, and configuration rules, followed by
the tagging of corresponding transitions, the CASE-FX-enhanced

Rose-RT model contains a family of systems. Generating distinct
instances of the system requires only selecting the desired feature
values and completing the 3-step build process. Furthermore, all
information is stored permanently within the native Rose-RT
model file, so the initial feature modeling setup need only be done
once.

4. DISCUSSION
Pre-compiler instructions and if-then statements could accomplish
the same task as CASE-FX, but leading to reduced performance
and code that is difficult to manage. Our tool comprehensibly
utilizes Czarnecki and Eisenecker’s feature modeling approach,
enabling Rose-RT developers to better create and manage a
complete set of system family features. To our knowledge, this is
the first attempt to implement state-level feature modeling
functionality into a CASE tool.
Limitations of the RRTEI required us to make some design
compromises. Specifically, we were unable to provide a one-step
build process and unused transitions had to be disabled rather than
removed from the build.
One possible improvement to CASE-FX would be assigning
feature values to other UML constructs such as states, capsules
and protocols, in addition to the transitions. This would ensure all
objects not belonging to any enabled feature value are excluded
from compilation, leaving all unnecessary code out of the current
instance build. For consistency, sequence, activity, and other
UML diagrams could also be enhanced with feature modeling
constructs.
Furthermore, adding the ability to draw feature diagrams directly
in CASE-FX, rather than transcribing them using the form
interface, would simplify the task of incorporating feature
modeling into the Rose-RT model. The diagram could then be
validated and verified with external (non-Rose-RT) design
artefacts.

5. CONCLUSION
Feature modeling is a powerful design-for-reuse concept which
can prevent superfluous work and save development time. With
CASE-FX, we have shown how these theoretical concepts can be
added to existing CASE tools to help developers create and
manage system families. We hope the area will be further
explored and that feature modeling capabilities become a standard
component of CASE tools.

REFERENCES
[1] Appel, A. Modern Compiler Implementation in Java Second

Edition. Cambridge University Press, 2002.
[2] Bosch, J. Design and Use of Software Architectures:

Adopting and Evolving a Project-Line Approach. Addison-
Wesley, 2000.

[3] Clements, P. and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[4] Czarnecki, K. and Eisenecker, U. Components of Generative
Programming. Proc. of the 7th European software
engineering conference. September 1999, 2-19.

[5] IBM Rational Software. Home page. Accessed June 2007.
http://www-306.ibm.com/software/rational/

