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Abstract. Many security policies force users to change
passwords within fixed intervals, with the apparent justi-
fication that this improves overall security. However, the
implied security benefit has never been explicitly quanti-
fied. In this note, we quantify the security advantage of a
password expiration policy, finding that the optimal ben-
efit is relatively minor at best, and questionable in light
of overall costs.

1 Introduction and model

Password aging policies, also called password expiration
policies, force users to change passwords within fixed in-
tervals, e.g., every 30 days or six months. The historical
idea [2, 4, 10] is that this increases security—although
the implied gain has never been quantified. Nonetheless,
password expiration policies remain common in prac-
tice [8]. In this note, for the first time, we explicitly quan-
tify the security gain of changing passwords under an ap-
propriate analytic model, relative to an ongoing guessing
attack.

Password expiration aims to either decrease the
chances of an adversary coming into possession of an
account password, or to respond to it—however the ef-
fectiveness of the latter is seriously called into question
by research showing (see Section 4) that when password
changes are forced, often new passwords are algorithmi-
cally related to old, allowing many to be found in few
guesses. This presumably leaves the main benefit to be
from decreasing the chances of a password being guessed
while it remains active.

The practice of password expiration was widely moti-
vated [3] by guessing attacks. Historically, offline guess-
ing attacks have been cited as a major concern [4], albeit
requiring a relatively limiting set of circumstances [9] in-
cluding possession of verifiable text against which to test
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guesses offline, e.g., password hashes from a compro-
mised password file. Online attacks allow fewer guesses,
but are easily mounted.

To facilitate analysis, our attack model is as follows.
An attacker is in the process of exhaustively guessing
passwords for a given account. For simplicity, assume
online guessing (though we also discuss offline guess-
ing). The guessing attack continues in parallel with any
user password changes within the expiration policy pe-
riod. We assume the attacker knows the length of the
policy period, but not the precise time the user changes
passwords. The attack strategy is a deterministic search,
for a password contained in a known, finite space; note
that this implies that an exhaustive search is guaran-
teed to eventually succeed in the absence of a password
change. The attacker, knowing that a change policy is
in effect, whenever reaching the end of the password
search space without success will begin searching the
space anew (possibly in a different deterministic order).

We ask: what defensive advantage results from a pass-
word change conforming to the policy? Section 2 pro-
vides the base analysis for the simpler problem of cryp-
tographic key search with randomly chosen keys. Sec-
tion 3 contextualizes the results for the main problem
of interest: guessing user-chosen passwords. Section 4
notes related work. Section 5 concludes.

2 Exhaustive search with changing keys

We first model password guessing as an exhaustive key-
search problem, using as a framework the related crypt-
analytic question: how does changing a cipher key af-
fect an attacker’s probability of correctly guessing that
key? The attacker is assumed to have suitable plaintext-
ciphertext pairs for testing purposes. This problem is
harder for the attacker (i.e., takes longer before success)
due to a random-key assumption, but simpler to analyze
than that of guessing user-chosen passwords; we later ex-
plain the relationship.
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Suppose message M is encrypted to ciphertext C =
Ek(M) under cipher E and key k ∈ {k1, k2, . . . , kR},
where we assume R = 2r equi-probable keys in the
space. An attacker V tries to guess the correct key
by proceeding one guess at a time exhaustively through
some arbitrary but deterministic ordering of the key
space; ki is the ith key in this ordering. For context,
we first consider some simple questions of interest.

Q1: What is V ’s probability of success for a single
guess? Answer: 1/R.

Q2: What is V ’s probability of success after c guesses?
Answer: c/R.

Q3: What is V ’s expected number N of guesses before
success? Answer: N = R/2.

Thus if the time required by V to exhaustively test
the full set of keys is T , we expect a successful guess
halfway through the search, at time T/2.

2.1 Towards the problem of interest
To approach our problem of interest, the game is changed
as follows. V guesses ki at time ti, i ≥ 1. At a ran-
dom time tu+1 ∈ [t2, tR] unknown to V , the key un-
der which M is encrypted is changed to a random key
k∗. The correctness of key guesses thereafter is relative
to k∗. Assume V completes the original key search se-
quence, guessing each of the R keys once ordered by
some random permutation. (An oracle answers whether
each guessed key matches the active key; this is analo-
gous to an online password guessing attack.) Our main
question is: does changing k to k∗ give a security advan-
tage, reducing the probability of successful attack in a
fixed period? The answer is yes, as explained next—but
the advantage is small. (If you find this counter-intuitive,
consider this question, related to Q1 above: if z is the
probability that an attacker’s next guess is your pass-
word, how does z change if you change your password
just before the guess?)

2.2 The base case T ≤ P

NOTATION. Let ps denote the probability of attack suc-
cess overR exhaustive guesses; T the number of units of
time the attacker needs to test the full set of R guesses;
and P the password policy expiration period.

For T ≤ P , determining ps involves considering two
time intervals: [t1, tu] with k active, and [tu+1, tR] with
k∗ active; u ≥ 1. Success means finding either key while
it is active. We visualize a timeline from t1 to tR with
ki guessed at time ti. This partitions the keyspace into
W1 = {k1, . . . , ku} and W2 = {ku+1, . . . , kR}. Let
q = u/R. Table 1 details the four cases to consider.

From it, the overall probability of success is ps = q1 +
q2 + q3 = 1 + q2 − q. The probability of failure, pf =
q − q2, has maximum 0.25 at q = 1/2 (i.e., at u = R/2)
occurring when time is split evenly over the keys. Thus
the defender’s best strategy is to change keys at exactly
the mid-point of the time T it takes to search the entire
keyspace; of course, it is also reasonable to expect users
to delay a change until forced as P expires. Also, since
real attackers do not inform defenders of their T value,
even motivated defenders are unlikely to ever attain this
best-case reduction, from 1.0 to 0.75, of attacker success
probability over R guesses.

Case Events Result Probability
1 k ∈W1, k∗ ∈W2 success q1 = (q)(1− q)
2 k ∈W1, k∗ 6∈W2 success q2 = (q)(q)
3 k 6∈W1, k∗ ∈W2 success q3 = (1− q)(1− q)
4 k 6∈W1, k∗ 6∈W2 failure q4 = (1− q)(q)

Table 1: Key search outcomes (q = u/R; see text).
Smaller values T (i.e., faster search) decrease the

probability of a key change (cf. user password change)
occurring before a successful guess, moving the proba-
bility of attacker success ps per search period T closer to
1.0. As T approaches P from below, the probability of a
key change within T increases.

The attacker improves his probability of success be-
yond p∗s = 0.75 by starting a fresh search on failure after
R guesses. The probability p(i)s of success within i search
periods T (time i ·T ) is 1 minus the probability of failure
on all i searches. Thus for p∗f ≤ 0.25 and assuming in-

dependence, p(i)s = 1− (p∗f )
i ≥ 1− 4−i. Attack success

is near certain even for small i; already for i = 4 search
periods T we have p(4)s ≥ 0.996.

2.3 The case T > P

Next, consider T > P . If T = 2P , and the user delays a
key change until forced at time P , then the change for an
individual user is at the mid-point of the search period T .
With ps replaced by ps,t now for T = t ·P , this achieves
ps,2 = 0.75, the minimum (i.e., best case for defender)
under the base analysis. Unfortunately, the value ps is
per exhaustive search period T ; by starting a new search
on failure, even unlucky attackers expect success within
just a few periods T , as noted above.

To generalize this for T = t · P , first consider t = 3.
Envision a timeline of length 3P partitioning the search
space into intervals W1,W2,W3 (cf. base case above).
Assume a user delays changing their key (password) un-
til policy requires. Then each Wi has “length” corre-
sponding to R/3 keys, i.e., 1/3 of the keyspace each. Let
k(i) denote the user key active during interval Wi. For
the attack to succeed, the attacker must guess at least one
k(i) while that key is active; the attack fails if and only
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if (k(1) /∈ W1) ∧ (k(2) /∈ W2) ∧ (k(3) /∈ W3). The
fraction of candidates that an attacker can try in each in-
terval is 1/3. With the model assuming random choices
and search order (equi-probable keys), the probability for
each individual event k(i) /∈Wi is (1− (1/3)). Thus the
probability the attack fails is pf = pf,3 = (1−(1/3))3 ≈
0.296.

For T = t · P the above generalizes to give a main
result of

pf,t = (1− 1/t)t

with limit as t → ∞ of pf,∞ = 1/e ≈ 0.368, and thus
probability of attack success ps,∞ ≈ 0.632 over a sin-
gle exhaustion period T . As an attacker’s search power
weakens (i.e., larger T to search full space), the expecta-
tion of attack success should fall; but to repeat, this anal-
ysis tells us that for T = t · P in the limit (as t → ∞),
the attack success expectation drops to no lower than
ps,∞ ≈ 0.632, from the t = 2 lower bound ps,2 = 0.75.

Restarting a search upon failure after completing an
initial search period T again improves the attack success
probability, as noted earlier. By executing i successive
searches, success probability over time i · T improves to

p
(i)
s,t = 1− (pf,t)

i = 1− (1− 1/t)it.

For example, at t = 10 and i = 4 we have p(4)s,10 ≈ 0.985.
REMARK ON T � P (MANY KEY CHANGES WITHIN

PERIOD T ). The results for case T > P above natu-
rally apply for subcase T � P , wherein key changes
would occur many times before the attack completes a
single full search cycle. Note that in terms of attack suc-
cess, more important than the number of changes is the
attack time needed to cover the search space (or a sub-
set in which the key is expected to be with high prob-
ability). As Section 4 discusses, from Desmedt [6] we
already know that for an analogous key search problem,
the probability of attacker success remains high even if
the key is changed after every guess.

REMARK ON OFFLINE ATTACK SPEEDS VS. EXPIRA-
TION PERIODS. We comment here on the relevance of
password aging in light of the speed of offline attacks.
Originally, an explicit goal of password expiration poli-
cies was to bound the risk of falling to a year-long at-
tack to one in a million (see [4])—in essence, asking for
the condition T � P . With respect to offline attacks
today, this goal is unattainable in the face of modern re-
sources which easily allow 7-10 billion guessing trials
per second [4, 9]; even if users chose 8-character pass-
words totally at random from a set of 93 symbols, ex-
haustive search on the full space of 938 = 252.3 elements
takes only 9.2 days, and the explicit goal would require
users change passwords every 800 milliseconds (clearly
nonsense).

This leads us to revisit the relationship between T and
P in today’s environment. One reality is very fast off-
line search capabilities; T is getting smaller. Another
is the necessity to keep expiration periods P tolerable to
users—decreasing P appears unacceptable. If full offline
searches are completed in time T before a key (pass-
word) is changed, then the aging policy provided little
protection against the offline guessing attack. Since of-
fline attacks are so much faster, this leads us to return our
analysis focus to online attacks, to see what protection is
possible there. In practice user-chosen passwords are not
random and skewed real-world password distributions al-
low online guessing attacks with improved efficiency, as
discussed next.

3 Relationship to Password Guessing with
Aging Policies

The analysis above holds for equi-probable passwords—
e.g., as might arise from system-assigned passwords.
However, such systems in which passwords are suffi-
ciently user-friendly remain elusive. From our analysis,
one might conclude that even for idealized systems, the
security gain delivered by password aging is small rel-
ative to extra burdens introduced. As we now consider,
for password distributions as found in practice, the sit-
uation is worse in the following sense: knowledgeable
attackers can expect success earlier (though the success
probability over full space searches remains as detailed
above).

In moving from analyzing the impact on security of
password aging on idealized passwords to guessing user-
chosen passwords in the real world, the analysis is more
involved due to password length variation and unknown
skewed distributions. The first is easily handled: though
in some cases users may choose passwords of uncon-
strained length, the vast majority fall within well-defined
bounds. This justifies modelling finite spaces of n-
character passwords for fixed n (e.g., n ≤ 8 or 12), yield-
ing reasonable approximations.

The second issue is less tidy. As is well-known, user-
chosen passwords are far from equi-probable; skewed
distributions result as password choices of many users
follow predictable patterns (see Section 4). Knowledge
on optimizing practical online guessing attacks, and im-
proved metrics for measuring their efficacy, has been ad-
vanced by Bonneau [1] in conjunction with his (privacy-
preserving) study of the largest natural dataset to date,
and, e.g., analysis by Weir et al. [17] of large datasets of
plaintext passwords available due to publicized compro-
mises. A few highlights help us contextualize.

In practice, optimal adversaries focus effort on the eas-
iest targets first, and are “early quitters” in the sense
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of rarely fully exhausting a guessing space. The opti-
mal attack tries passwords in decreasing order of prob-
ability.1 This is effectively measured by partial guess-
ing metrics [1] such as the β-success rate giving an at-
tacker’s probability of success after β guesses:2 λβ(χ) =∑β
i=1 pi, where pi is the probability of password xi

from distribution χ, with pi in decreasing order. Try-
ing higher-probability candidates first naturally results in
expected success earlier. Skewed distributions thus de-
crease the attack work by optimal adversaries.

In scenarios where exhaustive search is abandoned be-
fore completion, “earlier” may mean success versus fail-
ure. In the context of the §2 analysis, an attacker guess-
ing in probability order on passwords from skewed dis-
tributions can expect to succeed earlier in a period T .
However as noted, the expectation of success over the
full exhaustive period T remains per the analysis—as it
measures success relative to a complete search over time
period T . While we avoid herein possibly contentious
assumptions about specific probability distributions, we
start §4 with examples illustrating how surprisingly ef-
fective optimal searches have been on specific datasets.

In summary, whether considering idealized equi-
probable passwords per the Section 2 model (which
is best-case for defenders), or the practical reality of
skewed distributions noted here, the maximum advan-
tage that a defender can hope to gain by a policy-driven
password change is a reduction in the expectation of at-
tack success over a single period T , from 1.0 (guaranteed
success over the full period) to a probability no lower
than (and as discussed, likely higher than) 0.75 for the
case T ≤ P and in no cases any lower than 0.632 per
period T under any scenario T > P discussed. The at-
tacker has yet further opportunities for success by start-
ing fresh searches in subsequent periods T (or, at his op-
tion, restarting at any point after a sufficient fraction of
high-probability candidate passwords is tried within any
given period T ).

4 Related Work

Curry [5, p.20] notes that password aging is a long-
known defensive mechanism (cf. [2, 4]). Weir et al. [17]
found, as part of statistical analysis of real-world pass-
word datasets including one of over 32 million pass-
words, that the most popular 50,000 items from a train-
ing sub-list of 5 million cover over 25% of passwords
(when tested on a disjoint sub-list of 1 million passwords

1 These probabilities are unknown and change across datasets; es-
timates are used, based on large datasets accumulated from prior com-
promises, or from heuristic tools.

2More precisely, this is for β guesses per account. The optimal
attack tries the most probable password on each account, then the next
most probable, etc.

from the original dataset) of character-length 7 or more,
and 14% of those length 10 or more. Bonneau [1], from
analysis of a natural dataset of 70 million passwords, es-
timated that an online guessing attack trying the most-
popular few passwords on each of a large number of ac-
counts, say 10 per account, yields about 1% of passwords
(thus relative to this particular measure, passwords of-
fer the security of about 10-bit random strings); and an
optimal attacker able to execute a massive search can
find about 50% of all account passwords after about 1
million guesses per account (so by this measure pass-
words roughly equate to 20-bit random strings). Thus
for skewed password distributions as occur in practice,
online attacks require relatively few guesses to be dam-
aging.

Zhang et al. [18], in a 2010 empirical study, found that
for a large proportion of user accounts at a major U.S.
university, knowledge of an existing password allowed a
user-chosen next password to be predicted with high suc-
cess using heuristic algorithms. For example, they suc-
cessfully guessed passwords for 41% of users in a dataset
of 7700 accounts in an offline attack with expected effort
of a few seconds using one machine, and broke 17% of
accounts on average in fewer than 5 online guesses in ex-
pectation. These results enjoy a filtering bias: the dataset
consisted of the 76% of passwords recoverable by crack-
ing tools, thus corresponding to the “easiest” passwords.

Both anecdotal reports and evidence-based research
(e.g., Weir et al. [17]; see above) indicate that subsets of
users tend to choose passwords which minimally satisfy
password composition policies. Mazurek et al. [12] men-
tion the concern that users who find composition policies
“annoying” may comply with policy in predictable ways.
Skewed distributions are targeted by heuristic password-
guessing tools [11, 13, 16]. It is now understood [1, 17]
that guessing-resistance for passwords should be mea-
sured by partial guessing metrics (see §3), not entropy-
based metrics [3]. Password compromise is one applica-
tion modelled by a variant of the FlipIt game of van Dijk
et al. [7], who pursue a game-theoretic analysis.

Desmedt [6, pp.50-51] considered an exhaustive deter-
ministic cryptanalysis machine M searching for a crypto
key, with T the time required for a full exhaustive (de-
terministic) search. If the key is changed after every
S seconds, and the attacker both restarts M at a ran-
dom starting point upon each such change (obtaining a
signal of the exact change times) and gains access to a
plaintext-ciphertext pair under each new key, a success-
ful key-finding attack remains possible; even changing
the key arbitrarily frequently (in the limit, for each mes-
sage transmitted) does not prevent successful attack.3

3If this is counter-intuitive, note that an attack which guesses key
candidates in a fixed sequence actually benefits from a key change if
the original target key is more distant in the guessing sequence than the
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The probability of finding a correct key within time
i · T, i ≥ 1, becomes (in the limit) 1 − 1/ei ≈ 0.632
for i = 1. Our complementary analysis herein began by
modelling a key being changed once at an arbitrary point
within the full search period T and assuming the attacker
continues in a sequential deterministic search (vs. chang-
ing keys arbitrarily often and restarting the key search
equally often); we then generalized to cases where over
the time T = t ·P for one exhaustive search, the number
of aging policy periods P is t = 2, 3, ... with user key
(password) changes at the end of each period P .

In the context of distributed computations involving a
large number of independent machines, Quisquater and
Desmedt [14, p.18] consider the difference in effective-
ness between exhaustive (deterministic) key search ma-
chines and exhaustive (random) key search machines,
where the former proceed sequentially through arbitrary
but deterministic permutations of the key space, while
the latter test random keys. They show that for T as de-
fined above, the expected time to success for a random-
ized search is T , twice the time expected for success in a
deterministic search (which as usual is T/2, with success
expected half-way through the sequence, and guaranteed
upon full completion at time T ).

5 Concluding Remarks

A forced password change stops ongoing account access
by adversaries who have come into possession of an
account password (including friends given a password
“temporarily”), who may otherwise enjoy continued
access through that password. However, it provides
little help against numerous other attacks, including
those which upon first access immediately procure target
files, set up a back door, or install keystroke-logging
software or other persistent malware to render ineffective
subsequent password changes. For example, in many
operating systems, the “change password” command is
easily redefined within a user environment (i.e., without
privilege escalation) to execute that system function
followed by sending the new password to a colluding
site, e.g., by browser through a URL query parameter,
or by email. In sum, these security-specific observations
and the results in Section 3 suggest the security benefit
of password aging policies are at best partial and
minor. Combining this with the well-known and widely
experienced (negative) usability impact of password
aging policies, and results [18] mentioned earlier on
high predictability of new passwords from knowledge of
old, the burden appears to shift to those who continue to
support password aging policies, to explain why, and in

newly updated key. In our analogous problem herein, the implication
is that a successful guessing attack cannot be prevented even if a user
changes passwords continuously, as quickly as system interfaces allow.

which specific circumstances, a substantiating benefit is
evident.
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