
Cesar: Visual Representation of Source Code Vulnerabilities
Hala Assal*

School of Computer Science
Carleton University

Sonia Chiasson†

School of Computer Science
Carleton University

Robert Biddle‡

School of Computer Science
Carleton University

ABSTRACT

Code analysis tools are not widely accepted by developers, and soft-
ware vulnerabilities are detected by the thousands every year. We
take a user-centered approach to that problem, starting with ana-
lyzing one of the popular open source static code analyzers, and
uncover serious usability issues facing developers. We then design
Cesar, a system offering developers a visual analysis environment
to support their quest to rid their code of vulnerabilities. We present
a prototype implementation of Cesar, and perform a usability anal-
ysis of the prototype and the visualizations it employs. Our analysis
shows that the prototype is promising in promoting collaboration,
exploration, and enabling developers to focus on the overall quality
of their code as well as inspect individual vulnerabilities. We finally
provide general recommendations to guide future designs of code
review tools to enhance their usability.

1 INTRODUCTION

Detecting software vulnerabilities is a classic problem in computer
security. Microsoft Security Response Centre defines a software
vulnerability as a security exposure that results from a product
weakness that the product developer did not intend to introduce and
should fix once it is discovered [15].

Major software companies are taking the initiative to integrate
security in the Software Development Lifecycle (SDLC), starting
from the early stages. For example, Google has an independent Se-
curity Team responsible for aiding security reviews during the de-
sign and implementation phases, as well as providing ongoing con-
sultation on relevant security risks and their remedies [1]. Microsoft
has been following a security-oriented software development pro-
cess since 2004. The Microsoft Security Development Lifecycle
(SDL) introduces security early in the development and throughout
the different stages of the traditional SDLC [16]. However, soft-
ware vulnerabilities are discovered daily; close to 6500 vulnera-
bilities were reported in 2015.1 Heartbleed2 and Shellshock3 are
two prominent examples of software vulnerabilities demonstrating
the importance of integrating security in the different stages of the
SDLC, and conducting security code reviews to reduce chances of
implementation mistakes.

Static analysis [22] is a method of software testing that can be
performed throughout the different stages of the development to
reduce risks of software vulnerabilities. Since it does not require
the code to be executed, this method can be employed during early
stages of the software when errors are less expensive to fix [9, 3].
Static-code Analysis Tools (SATs) are tools that automatically an-
alyze static-code to uncover vulnerabilities. However, despite their

*e-mail: HalaAssal@scs.carleton.ca
†e-mail: chiasson@scs.carleton.ca
‡e-mail: robert.biddle@carleton.ca

1https://web.nvd.nist.gov/view/vuln/statistics
2http://heartbleed.com
3http://seclists.org/oss-sec/2014/q3/650

benefits [9], SATs are not widespread in the Software Engineering
community [13], e.g., due to lack of support for collaboration [12].

The cybersecurity visualization research community has ac-
knowledged the need for using user-centered design methodolo-
gies and evaluation through the entirety of the design process of
visualization tools [14]. We approach the topic of usable security
for software development from the users’ perspective, and take a
user-centered approach in designing a visual analysis environment
to effectively support developers analyze the security of their code.
Such an environment also aims to support collaboration amongst
the development team analyzing source code vulnerabilities by en-
couraging discussion and exploration of potential issues.

This paper presents the following contributions.
• Study usability issues facing software developers while using

code analyzers by evaluating one of the popular open-source
SATs (FindBugs).

• Introduce Cesar, an initial visual analysis prototype to
support what we call Collaborative Security Code Review
(CSCR), where developers/testers collaborate to reduce risks
of security vulnerabilities in the code under review.

• Evaluate the usability and effectiveness of the prototype, and
propose additional features for future design iterations.

• Provide general recommendations for designing collaborative
code review tools.

In section 2, we provide a background on SATs, software visu-
alizations, and the two usability evaluation methods used herein. In
section 3, we present the usability evaluation of FindBugs. We then
present Cesar in section 4 and evaluate its usability in section 5. In
section 6, we present additional features for the prototype. Finally,
we provide general design recommendations for collaborative code
review tools in section 7.

2 BACKGROUND

2.1 Static Analysis Tools (SATs)
Current SATs are not perfect; they build a non-exact model of the
code to be analyzed and this approximation inevitably leads to false
negatives. A false negative occurs when a vulnerability exists in
the program being analyzed, yet the tool fails to detect it. False
positives are also a problem with SATs, where the tool mistakenly
reports a vulnerability. Thus, SATs require human inspection of
discovered vulnerabilities; SAT users need to inspect vulnerabil-
ity reports produced by the tool in order to determine whether the
discovered vulnerabilities are true or false positives, in addition to
looking for potential false negatives. The process of classifying de-
tected vulnerabilities is referred to as bug triaging [3]. For the suc-
cess of the triaging process, it is important to consider how to make
the best use of a SAT despite the shortcomings of both the tool (e.g.,
false positives and negatives) and the human user (e.g., cognitive bi-
ases and short attention span) [3]. A tool that overwhelms the user
with a long list of detected vulnerabilities containing many false
positives is likely to be ignored by the user or increase the chances
of user errors in triaging.

Johnson et. al. [12] explored the different factors influencing de-
velopers’ decision to use SATs to uncover vulnerabilities in their
code. One of the top reasons for using SATs was that these auto-
mated tools enable developers to discover potential vulnerabilities

978-1-5090-1605-1/16/$31.00 © 2016 IEEE

https://web.nvd.nist.gov/view/vuln/statistics
http://heartbleed.com
http://seclists.org/oss-sec/2014/q3/650

in their code in a faster and less-effortful manner compared to man-
ual line by line inspection. Johnson et. al. and Lewis et. al. [13]
explored reasons for the underuse of SATs by developers, and they
found that developers are reluctant to use SATs because they do
not adequately support collaboration between team members. In
addition, because of false positives, it is sometimes inefficient for
developers to use these tools, especially in large projects. Many
tools also require complicated steps to customize, and yet they do
not fully enable developers to make the customizations they want.

Visual representations of static analysis output are features miss-
ing from most current SATs. Some of the available proprietary tools
provide simple visualizations (e.g., bar graphs showing the number
of issues in a project), yet to the best of our knowledge no tool
provides comprehensive visual analysis support. Johnson et. al.’s
participants expressed the desire for integrating visual representa-
tions of source code vulnerabilities in SATs to support analysis.

2.2 Software Visualizations
The majority of the software visualization literature focuses on sup-
porting software development tasks, and little work addresses soft-
ware security from the developer’s standpoint [11]. Research on
collaborative User Interfaces (UIs) and multitouch surfaces has re-
cently gained traction in Human-Computer Interaction (HCI) liter-
ature. In this section, we present two relevant proposals for sup-
porting software development using multitouch surfaces, as well as
two proposals for software security visualizations.

Müller et al. [18] explored how multitouch interfaces could sup-
port code reviews to help improve software quality. Aiming to
encourage and support collaborative code reviews, their prototype
combines different approaches, such as source code visualizations,
code smell detection based on software metrics, and support for an-
notations of code. Anslow et al. [4] developed a source code visu-
alization system using a large multitouch table as the interface. The
aim of this system was to help developers collaborate in exploring
the structure and evolution of the different versions of the software
systems. The visualization system supports multiple visualizations
that provide an overview of the system being analyzed with the abil-
ity to dig deeper for more details, as well as discovering problem-
atic entities such as particularly small or large classes. Anslow et al.
found their system encouraged collaboration and team discussion.

As for visualizations specifically for software security, Fang et
al. [10] proposed a tool that automatically produces diagrams nec-
essary for software security analysis tasks, such as threat modelling.
The detailed diagrams are automatically generated by the tool after
it collects trace data from the system during run time. The tool
allows security analysts to explore the diagrams through time and
with different levels of detail. Automatically generating the dia-
grams using this tool is significantly faster than the manual method;
the proposed tool reduced the time taken to the initial diagrams
from months to hours. Goodall et al. [11] developed a visual anal-
ysis system to allow developers to explore vulnerabilities detected
in their source code. They aimed to help developers gain a better
understanding of the security state of their code by providing them
with a visual representation of the aggregate results from different
code analysis tools. The visualization presented each source code
file as a block, where the block’s width depends on the number of
potential vulnerabilities detected in the file it represents. Although
the authors explain different use cases of their proposal, there was
no user testing or usability evaluation done to evaluate its efficacy.

2.3 Cognitive Dimensions (CDs) Framework
We use the Cognitive Dimensions (CDs) framework [8] as one of
the methods for evaluating the existing SAT and Cesar. The frame-
work seeks to determine whether users’ intended activities are ap-
propriately supported by the system in question. In cases where
there are a deficiencies, the designer explores how the system can

be fixed and the trade-offs of different design alternatives guided by
the framework. The CDs framework was designed to aid, even the
non-Human Computer Interaction specialists, in evaluating the us-
ability of their systems. Blackwell and Green [7] developed a CDs
questionnaire for use by prospective users for evaluating system us-
ability. One of the aims of this framework is to improve the quality
of discussion between designers and those evaluating the design by
providing a common vocabulary—the cognitive dimensions. Eval-
uating the usability of a system using the CDs framework consists
of three main steps: (1) classifying users’ intended activities, (2)
analyzing the CDs, and (3) determining whether the system appro-
priately supports the users.

The CDs framework classifies six generic activities: incrementa-
tion, transcription, modification, exploratory design, searching, and
exploratory understanding. Activities in Cesar fall under search-
ing, and exploratory understanding. There are 13 main CDs, and
more have been proposed in literature [8]. Each dimension gives
a reasonably general description of an information structure. The
purpose of the system defines whether it would be better for its us-
ability to be high or low on a CD. We provide a brief description the
five CDs [8] selected for the usability evaluations presented herein.
• Viscosity is the system’s resistance to change. A viscous system

requires users to perform many actions to fulfill a single task.
Although viscosity could be tolerable for transcription and incre-
mentation activities, it is harmful for modification activities and
exploratory design. For ease of readability, we will rename this
CD to its desirable counterpart Fluidity (FLUI). Being at the
opposite end of the viscosity spectrum, fluidity is useful for mod-
ification activities and exploratory design. Due to the nature of
our application (code review tools), we include this dimension to
relate to changes to representations of vulnerability information.

• Hard Mental Operations is defined as the system’s high demand
on users’ cognitive resources. A system exhausting users’ work-
ing memory makes tasks more complicated to perform. Likewise
for ease of readability, we will rename this CD to its desirable
counterpart Low Cognitive Load (LCOG), where a system does
not place a high cognitive load on the user.

• Abstraction (ABST) is whether the system uses abstraction mech-
anisms and the types of abstractions used. Abstractions help
make information structures more succinct and could reduce vis-
cosity. Employing the proper level of abstraction is useful for
exploration activities.

• Closeness of Mapping (CLOS) is providing a match between rep-
resentations of information and its domain in a way that allows
users to build on their domain knowledge to solve problems.

• Visibility and Juxtaposability (V IJU) is the ability to view com-
ponents easily and to view any two components side-by-side.
This CD is useful for transcription and incrementation activities,
and is especially useful for exploratory design.
FLUI, LCOG, ABST , CLOS, V IJU are all particularly desirable

cognitive dimensions for exploratory design.

2.4 Cognitive Walkthrough (CW) Evaluation

The Cognitive Walkthrough (CW) [20] is a method used for eval-
uating the usability of systems from the perspective of users. It
focuses on evaluating the system learnability by focusing on users’
cognitive activities to ensure the ease of system learning through
exploring the interface. Users’ tasks are identified, and one or more
evaluators work through the steps to perform these tasks providing
suggestions to improve the system learnability. This method has
been used in several usability evaluation studies; e.g., Allendoer-
fer et al. [2] evaluated the usability of their visualization system
using the CW methodology.

In our usability evaluation studies, we combine both the CDs
framework and CW methodology. We evaluate each interface using
the CW methodology, where evaluators go through the different

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

(a) FindBugs (b) Cesar

Figure 1: Cognitive Walkthrough session setup.

tasks provided by the interface, to take advantage of the in-context
discussion among the evaluators. Next, we reflect on the results of
the CW, and evaluate the interface using the CDs framework.

3 FINDBUGS’ STUDY

After surveying different open source and proprietary SATs [19],
we chose to evaluate the usability of FindBugs.4 It is a popular open
source tool used in Microsoft SDL and is widely used in similar re-
search projects [12, 5, 23]. This study does not focus on FindBugs’
underlying vulnerability detection mechanisms, rather on the tool’s
UI as it is the element with which developers interact. FindBugs
analyzes Java code to detect potential vulnerabilities, and divides
them into nine categories, e.g., Security, Malicious Code, and Per-
formance. Each vulnerability has two metrics: “Rank” indicating
its severity and “Confidence” indicating the tool’s confidence that
it is an actual issue.

3.1 Study Design
We conducted a CW of FindBugs v.2.0 with a group of four evalua-
tors who are experts in the fields of security and usable security. We
refer to FindBugs’ evaluator i as EiFB. The session lasted 90 min-
utes and was voice recorded. Members of the research team were
present to observe and take notes during the session. FindBugs UI
was displayed on a 47-inch screen using a single mouse and key-
board for interaction (see Fig. 1a). The session started with running
FindBugs analysis on the source code of Apache Tomcat v.6.0.41.5
Next, the evaluators performed some tasks to explore FindBugs’ UI
and its warnings of potential vulnerabilities. These tasks include:

T1 Choose a package and view its vulnerabilities.
T2 How many Security vulnerabilities are there in the codebase?
T3 Choose a class and view its number of vulnerabilities.

The evaluators then focused on some warnings and worked towards
classifying them as false positives or true vulnerabilities. Finally,
the evaluators discussed different UI features they wished to have
been available in FindBugs.

3.2 Results
We found, also aligned with previous research [12], that FindBugs’
UI does not adequately support collaboration. The evaluator man-
aging the input devices, E2FB, was more engaged in exploring the
interface and vulnerabilities than the rest of the evaluators. Com-
municating ideas was problematic; evaluators tried to draw each
other’s attention by pointing to the screen, and they sometimes re-
sorted to asking E2FB to point the mouse to what they wanted to
discuss by describing its position (e.g., top right of the screen).

The UI has poor fluidity (−FLUI),6 hard to navigate, and often

4http://findbugs.sourceforge.net/findbugs2.html
5http://tomcat.apache.org/download-60.cgi
6A + or − sign before a CD indicates that the interface is high or low

on this dimension, respectively. A + sign throughout this paper indicates an
advantage of the interface.

the evaluators would be silent trying to determine how to perform
a certain task or how to make sense of the information presented
on the screen. In addition, to complete some tasks, the evaluators
needed to perform many steps. For example, FindBugs presents
potential vulnerabilities as a tree structure, where the details of the
individual vulnerabilities are accessible via the leaf nodes. For ev-
ery vulnerability the evaluators wanted to inspect in details, they
had to click through all the nodes down the tree branch contain-
ing that vulnerability. This deterred the evaluators from extensively
exploring vulnerability details, and likewise had a negative effect
on collaboration between them, as they were very consumed in the
steps that they forget to discuss the information they were shown.

The default setting of FindBugs does not maintain the codebase
hierarchy (−CLOS); the tree structure focuses on individual vulner-
abilities rather than on their distribution in the codebase. Granted
the UI allows users to structure the tree by the codebase packages,
however this option is hidden in the UI in a way that the evaluators
did not discover throughout the entire CW session. Although the
default hierarchy of the tree structure is adjustable, it was not clear
for the evaluators how to perform this task and the role of some el-
ements of the UI was not clear. For example, while trying to adjust
the structure of the tree, E1FB said, “I don’t know what the arrow
part is. [Does] the arrow means ignore everything to the right?”

The structure of the tree, focusing on the vulnerabilities rather
than the codebase, swayed the evaluators to become too consumed
in the first vulnerability they viewed. This was exacerbated by the
fact that in order to view other vulnerabilities, they would have to
go through many steps and clicks. This led the evaluators to become
absorbed by their attempt to assess a vulnerability without assessing
the overall quality of the code, or thinking first about their strategy
to evaluate the codebase.

There was confusion related to other aspects of the UI as well,
such as the Rank and Confidence metrics. The Rank of a vulner-
ability is presented as an integer ranging from 1 to 20, while the
Confidence is presented by colours (e.g., if a vulnerability was de-
tected with high confidence, it is marked red). After inspecting the
interface, the evaluators deduced that the lower the rank, the more
severe the vulnerability. They were inspecting a low rank vulnera-
bility that was marked red. E2FB said, “So lower [rank] is higher
[severity]. Because it’s red? and red means bad.” However, to-
wards the end of the CW, the evaluators noticed another vulnera-
bility that did not match their reasoning. At this point E2FB ex-
claimed, “Wait, hold on! I thought lower was higher [severity]! So,
maybe the colour and the thing [rank] [aren’t] related.” This confu-
sion resulted from the inconspicuousness of the Confidence metric
(−V IJU). FindBugs’ UI does not explain what the integer values
or colours meant, thus the evaluators erroneously linked the colours
(i.e., Confidence) to the integer values (i.e., Rank), and attributed
them both to the vulnerability’s severity. The discussion trying to
decipher the meaning of, and relation between, the colours and the
integer values ended by E1FB saying, “I think the rank needs some
kind of explanation. What’s a 7 mean? [...] Is there anything in the
documentation that would help? [all laughing].”

On the other hand, FindBugs’ UI allows users to adjust the size
of its components, e.g., they could increase the size of the code pane
when they want to focus on the source code. In addition, when a
user clicks on the vulnerability leaf node in the tree structure, the
UI displays the details of this vulnerability in a separate pane, as
well as the source code where the potential vulnerability, with the
vulnerable lines highlighted. FindBugs also provides the ability to
add and save textual annotations to the detected vulnerabilities.

Although FindBugs allows users to focus on specific vulnerabil-
ities, it fails to encourage users to develop a strategy for evaluating
the overall quality of the code. In addition, it does not adequately
support collaboration nor exploration activities.

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

http://findbugs.sourceforge.net/findbugs2.html
http://tomcat.apache.org/download-60.cgi

Figure 2: Cesar’s treemap showing the distribution of selected vul-
nerability categories in package Catalina.

4 CESAR

We designed and implemented Cesar, a prototype aiming to lever-
age the benefits of SATs (e.g., FindBugs), while addressing their
shortcomings. We chose FindBugs for demonstration purposes,
however, our general approach could be applied to the results of
any SAT. The prototype was developed as a web application using
JavaScript and D3.7 This allows it to be used on many platforms
needing only a browser, thus eliminating the need to install more
software applications. Cesar offers a visual representation of the
output of FindBugs in the form of a treemap [21], where the code-
base (sub)packages are interior nodes and the classes are the leaf
nodes. The size of a leaf node depends on the number of poten-
tial vulnerabilities in the class represented by this leaf node relative
to the total number of vulnerabilities in the codebase. In contrast
to Goodall et al.’s proposal [11], Cesar’s treemap maintains the
codebase hierarchy to which developers are accustomed to main-
tain closeness to the programming environment. Cesar uses a large
multitouch vertical surface as an interface. Large Multitouch dis-
plays have shown promising results in supporting and promoting
collaboration between team members [4].

Cesar is designed to satisfy the following objectives:
O1 Support and encourage collaboration
O2 Encourage exploration
O3 Support focusing on the quality of the code as a whole
O4 Support focusing on details of specific vulnerabilities

The first step to building the prototype was to run FindBugs
analysis on a codebase. We analyzed the Catalina package of
Apache Tomcat written in Java. However, our implementation is
extensible to source code in any programming language that is or-
ganized in a hierarchical structure, either implicitly through the lan-
guage (e.g., Object-oriented Programming (OOP)) or through the
programmers’ file organization. The result of FindBugs’ analysis
is an XML file of potential vulnerabilities in the software analyzed;
the file contains each vulnerability’s name, its severity and priority,
the category under which it falls, and information about its location
in the codebase. However, the file is arranged by vulnerabilities,

7https://d3js.org

ignoring the codebase hierarchy. Thus, we extracted the XML file
and built a JSON file in the proper format for use by Cesar, main-
taining the codebase hierarchy. We also added the description8 of
every detected vulnerability to the JSON file.

Through checkboxes above the treemap visualization pane, Ce-
sar enables developers to choose the categories of issues they want
to include in the visualization. Figure 2 shows Cesar with all the
categories included in the treemap visualization. The visualiza-
tion is interactive, i.e., the treemap view is adjusted in real-time
to add/remove each category the user selects/unselects. However,
although the relative size of the treemap rectangles change with
changing the categories, the rectangles remain in the general vicin-
ity to help developers maintain perspective.

Users can change the view of the treemap to focus on a sub-
package by tapping it. The visualization thus zooms-in on that par-
ticular package filling the entire treemap pane with it, as in Fig-
ure 3 showing sub-package catalina.realm. When the user
zooms to the class level, they can view the number of vulnerabil-
ities in each class. Each rectangle is labelled with x of y, where y
is the number of issues in a class and x shows how many of those
belong to the selected categories. For example, in Figure 3, class
catalina.realm.RealmBase is labelled (1 of 9), indicating
that it has a total of 9 vulnerabilities, and only one of them is of the
selected category (Malicious Code).

When the user performs a long tap on a class, two additional
panes appear: “details” and “source code”. The former lists all
vulnerabilities (in the tapped class) that belong to the selected cat-
egories. Vulnerabilities are grouped by categories, and a brief de-
scription of each vulnerability is available. The description is col-
lapsable to save screen space. The “source code” pane displays
the class’s code, highlighting vulnerable lines. As shown in Fig-
ure 3, the “details” pane lists the only Malicious Code vulnerability
in class catalina.realm.RealmBase, whereas the “source
code” pane displays its code with the vulnerable line highlighted.

The current version of Cesar classifies the treemap using Find-
Bugs’ set of categories (e.g., Security, Performance). However,
this set could be customized to best fit the code review goals. For
a security-focused code review tool, the set (Cesar’s checkboxes)
would include exclusively security vulnerability categories (e.g.,
Buffer overflow, Cross-site scripting).

5 CESAR’S STUDY

To analyze how well Cesar fulfills its objectives, we conducted a
CW of its UI and used the CDs as the evaluation framework.

5.1 Study Design
We held two independent CW sessions, each with two evaluators.
The four evaluators were recruited participants with industry pro-
gramming experience and high experience in Java programming.
The evaluators performed all the tasks on the prototype, while
members of the research team observed and took notes. The ses-
sions were audio recorded and structured as follows. First, a re-
searcher introduced the study to participants and explained how a
CW is conducted, then the participants started working together in-
teracting with the prototype on a 75-inch vertical multitouch screen
(see Fig. 1b) to get an idea of how it works. The researcher then
gave participants some tasks to perform. After all the tasks were
done, each participant independently filled out a short survey solic-
iting their opinion of the prototype. The researcher then interviewed
the pairs to discuss their opinion of the prototype and their rec-
ommendations. Both the survey and interview questions were dis-
cussing the CDs, and were adapted from the CDs questionnaire [7].

We followed the CDs framework when designing the study. We
categorized activities done using the prototype according to the

8http://findbugs.sourceforge.net/
bugDescriptions.html

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

https://d3js.org
http://findbugs.sourceforge.net/bugDescriptions.html
http://findbugs.sourceforge.net/bugDescriptions.html

Figure 3: Cesar’s visualization, details, and source code panes.

CDs framework into exploratory understanding aiming to advance
developers’ understanding of the overall security-level of the pro-
gram (e.g., identifying packages and classes that contain the most
security vulnerabilities) and searching activities (e.g., looking for
the explanation of the vulnerability type). We divided the tasks into
“get to know your system” tasks where participants spend some
time exploring how Cesar works, followed by some “specific” tasks
that are representative of all that could be conducted using the pro-
totype, and finally some “general” tasks which allows them to re-
flect more on Cesar’s overall purpose.

The “Get to know your system” tasks included:
KT1 Select (one or more) categories of bugs to see their distribu-

tion in the code base
KT2 Zoom in one package to see the number of bugs
KT3 Change the bug categories selected to see the difference in the

number of bugs
KT4 Display the source code for a class
KT5 Find the different bug types present in a class

The “Specific” tasks included:
ST1 Find out how many security vulnerabilities in

catalina.core package
ST2 Find out how many packages have security vulnerabilities?
ST3 Find out which (sub)package is the least/most vulnerable?
ST4 Find out which line of code has Malicious code vulnerabilities

in class catalina.realm.RealBase?
ST5 Find out what does “MS: Field isn’t final but should be

(MS SHOULD BE FINAL)” mean?

For the “General” tasks, we asked the evaluators to imagine
they are in charge of approving this software for deployment. We
asked them to describe how they would do an appraisal of this soft-
ware and how would they prioritize which vulnerabilities to fix.

5.2 Cesar’s Strengths
In this section, we analyze the sessions’ outcomes based on the
CDs, and discuss how the prototype fulfills each of its objectives
(Section 4). In Section 6, we discuss improvements to address some
of Cesar’s weaknesses and enhance the user experience. Cesar’s
CW evaluator i is referred to as Ei.

Participants rated how Cesar fulfills objectives 2-to-4 on a scale
of 1 (very well) to 4 (not at all).9 Survey responses were positive,
with mean scores of 1 for O2, 1.75 for O3, and 1.25 for O4.

9Participants did not numerically rate Cesar with respect to O1, rather
we rely on the verbal discussion of their opinion and our observations.

O1 Support and encourage collaboration. In contrast to a
personal computer with a mouse and keyboard, the large multitouch
interface offered all evaluators the same view and level of control
over the interface. In FindBugs, the evaluator managing the input
devices was more engaged than the others (Section 3.2), whereas
Cesar’s evaluators were almost equally engaged in interacting with
the interface. They were actively discussing their understanding of
the different parts of the interface, as well as discussing the steps
they thought were necessary to perform the different tasks and the
implications of the different types of vulnerabilities. At no point
during Cesar’s CW sessions was one evaluator monopolizing the
interface while the other stood silent. E3 mentioned, “since it’s
touch, the control is accessible. You don’t have to hand over the
mouse or anything, so that’s good.” When an evaluator successfully
reached a desired view, they were keen to return to the main view
to show their teammate the steps followed to reach that view. As
an evaluator was waiting for their teammate to complete interacting
with the interface, they were focusing on the steps taken by their
teammate and they would sometimes say words like “aha” express-
ing that they have discovered something. The evaluators attributed
this to the natural feel of the interface and how easy it is to move
from one view to another. This implies that Cesar has high fluid-
ity (+FLUI). In addition, because the interface did not exhaust the
evaluators’ working memories (+LCOG), e.g., it does not require
them to carry information from one step to the next, the evaluators
did not feel that discussing the steps with their teammates would
break their train of thought, and so were able to discuss and share
information before moving to the next step.

O2 Encourage Exploration. Due to the abstract nature of the
visualization (+ABST) and the way the treemap structure main-
tained the codebase hierarchy familiar to developers (+CLOS), the
evaluators were stimulated to explore the different aspects of the in-
terface as soon as they started interacting with the prototype. In ad-
dition, E2 mentioned, “ [the interface] supports exploration pretty
well, just by the nature of touching the things that are on the screen,
like that encourages you to go back and look at other categories and
compare.” The flexibility of the system and the fluidity of switch-
ing from one view to another (+FLUI) helped the evaluators not
feel reluctant to change a view and explore more. For example,
when the task was to find the line number that contains a “Malicious
Code” vulnerability in a specific class (ST4 above), the evaluators
returned to the main view after inspecting that class, and looked
for the package that had the most “Malicious Code” vulnerabilities
even though this was not an assigned task.

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

The interface reduces cognitive load (+LCOG) when perform-
ing exploration tasks. For example, the evaluators would explore
which packages were most/least vulnerable by looking for the vi-
sually biggest/smallest areas in the treemap when only the “Secu-
rity” category was selected. The prototype thus provides a quick
overview as opposed to Findbugs where users would have to go
through each package in the tree structure and look for the number
of security vulnerabilities in each one. Cesar’s evaluators also men-
tioned that the treemap allowed them to easily discover areas where
there are many problems and to look for different trends in the code.
The structure of the interface guided the evaluators to continuously
consider the overview along with the detailed view, and the inter-
face induced them to continuously explore available information
and ask themselves questions such as “What happens if we uncheck
this vulnerability category?”, “Why is this package so big?”, and
“Why does this class have all these security vulnerabilities?”.

O3 Support focusing on the quality of the code as a whole
The different packages and classes in the codebase are represented
with rectangles in the treemap and the relative area of the rectangles
represents the number of potential vulnerabilities relative to the to-
tal number of vulnerabilities in the codebase. This form of abstrac-
tion (+ABST) helped promote the focus on the overall quality of the
codebase. For example, the evaluators were not drawn into individ-
ual vulnerabilities before acquiring an overall view of the quality
of the codebase. Instead, they initially developed a strategy for ap-
praising the software, and then compared the areas of the rectangles
to each other and to the overall area of the visualization in order to
begin exploring the most problematic packages. E1 said, “I think
we did take a step back to think, ‘okay what [is] our approach, do
we stay here in a details view or do we go back to the overview, or
you know should we filter things more, filter things less’. So, we
kind of took a step back I think before every task to kind of figure
out what our strategy is.”

We mentioned earlier that the interface guided the evaluators to
continuously consider the overview of the code base along with the
detailed view. This was accomplished by the ease of starting from
the main view containing the package in question and the ability to
zoom-in on it to get more details, where the level of zoom depends
on the detail depth. For example, in order to perform task ST4, eval-
uators started from the main view, showing the catalina pack-
age, zoom in on the realm package, and then displaying the vul-
nerabilities and source code of the RealBase class. Doing so, the
evaluators were able to evaluate the state of the realm package
with respect to the codebase before digging deep for the more de-
tailed information. The ease of switching between views (+FLUI)
prevented distraction from the evaluators’ objective and focused
their attention on the overall code quality. Nevertheless, the in-
terface does not force users to dig through the interface for every
task, as it allows for general exploration tasks, such as finding the
most vulnerable package, without delving into details. The eval-
uators mentioned that the interface was helpful in allowing them
to gain a general understanding of how vulnerable the codebase is,
and that it does this in a more interesting way than going through a
list of potential vulnerabilities. E4 said, “I think it’s good that it’s
pictorial and that people can discuss on it [...] It’s not a pile of text
that I’m going through. It’s not a list of errors.”

The interface allows for some shortcuts, e.g., it allows users to
display vulnerability details and source code of any class by a long
tap on its leaf node’s rectangle from any view. This could be use-
ful, for example, in case a user wants to explore the class that has
the most vulnerabilities, which would be represented by the biggest
rectangle in the treemap, or for someone who memorized the loca-
tion of a class on the treemap. We discuss more shortcuts that we
anticipate to be useful for advanced users in Section 6.

O4 Support focusing on details of specific vulnerabilities
When discussing their strategy for appraising the codebase, the

evaluators mentioned how they would use filters provided by the
interface and zoom-in on important packages to assess how well the
codebase fulfills their coding standards. E3 mentioned, “Depends
on what our standards are, or what we consider a bug that must
be fixed, or one that’s maybe not that important,” whereas E4 said,
“Maybe I would start with the security issues, maybe after I get all
the security [issues] fixed, I would look at another [category], say
performance,” while tapping on the respective checkboxes. By pro-
viding filters that allowed them to inspect vulnerability categories
that are more critical to them, and by adjusting the visualization in
realtime (+FLUI) as more categories are (un)checked, the interface
allowed the evaluators to narrow down their focus to those critical
vulnerabilities. For example, when the evaluators did not want to
inspect “Style” issues, they unchecked it to disregard it from their
analysis. Maintaining the structure of the codebase hierarchy in
the treemap visualization (+CLOS) aligned with the evaluators’ fa-
miliarity with the hierarchical nature of the codebase. This helped
the evaluators focus their attention on specific vulnerabilities, rather
than trying to resolve to which package a class belonged.

In addition to filtering out irrelevant vulnerabilities, evaluators
consistently checked the description of the vulnerabilities available
through Cesar. However, their behaviour varied ; some started look-
ing at the source code, discussing why a specific line was problem-
atic before looking at the provided explanation,while others started
with the explanation before checking the code. In either case, they
all inspected the vulnerability description area, mentioned that it
was useful, and that its placement close to the source code window
invited them to consistently refer to it (+V IJU).

6 FUTURE ENHANCEMENTS

In this section, we address how Cesar may be improved in future
iterations.

Display the number of vulnerabilities in a package on
the treemap. Minimizing vulnerability details displayed by the
treemap visualization encouraged the evaluators to inspect the over-
all code quality, e.g., by allowing them to compare the vulnerabil-
ity of a package relative to other packages or to the codebase as a
whole. However, our evaluators mentioned that displaying the ab-
solute number of vulnerabilities in the package could help them per-
form some tasks faster (+LCOG, +V IJU). For example, evaluator
E1 said, “It would be nice if the number of vulnerabilities that are in
a package could be written next to the package [name] [...] When
we were looking for the smallest package, we were like “is this the
smallest?”, “is this the smallest?”, whereas if it was just a number,
we would have been able to spot it quicker”. Thus, displaying the
absolute number of detected vulnerabilities in a package beside its
name would further augment users’ focus on the overall code qual-
ity and speed up some tasks. For consistency, the number beside
the package name should follow the same format as that displayed
on class rectangles. It should be in the form of (x of y), where x is
the number of issues from the selected categories, and y is the total
number of vulnerabilities in the package from all categories.

Add breadcrumbs trail. To further increase the fluidity of
the interface, we would use a breadcrumbs trail [17] to trace and
display the hierarchy of the user’s current treemap view in rela-
tion to the codebase structure. This would allow users to switch
easily between package levels with a single tap and to quickly
identify the location of the package/class in the treemap’s current
view in relation to the codebase (+FLUI). For example, rather
than having to tap twice on the screen to zoom-out of the fourth-
level sub-package (e.g., package interceptors with full path
catalina.tribes.group.interceptors) to the second
level (package tribes), the user would tap on the name of
the second-level sub-package in the following breadcrumbs trail:
catalina . tribes . group . interceptors. Although the evaluators
did not find it annoying to have to tap on the screen multiple times

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

Figure 4: A secondary visualization showing the distribution of vul-
nerabilities in each category. Selected categories are highlighted.

to reach a higher package, e.g., evaluator E2 thought that, “Getting
in [zooming-in] is really quick and then getting back up [zooming-
out] to the top is pretty quick as well”, we believe that this feature
would be particularly useful as a shortcut for more advanced users
and especially for large projects with deep package levels.

Use colours to represent data. In addition, as was suggested
by the evaluators during both CW sessions, we could use colours to
introduce another dimension of the data visualized by the treemap.
For example, rather than using random colours for the rectangles,
packages and classes that are more critical to the application, or
those that need to be thoroughly investigated against security vul-
nerabilities (e.g., classes handling databases), would be in warm
colours, and the others in cool colours. Alternatively, packages/-
classes could be coloured according to the severity of their vulner-
abilities, the warmer colours indicting more severe vulnerabilities.
This mechanism would provide yet another way for filtering infor-
mation and minimizing the cognitive load on users (+LCOG).

Use a secondary visualization. Finally, to increase the visi-
bility of the vulnerability state of the code, we propose a secondary
visualization to show the distribution of different vulnerability cat-
egories in the package/class in the current treemap (+V IJU). Ini-
tially, both visualizations would show the distribution of all vulner-
ability categories in the codebase as a whole (package catalina
in our example). In addition, we will employ the linking and brush-
ing techniques [6]. The secondary visualization and the treemap
will be linked, such that whenever the treemap changes, the sec-
ondary visualization will be updated in realtime to match the cur-
rent treemap. For example, if the user zooms-in on a sub-package,
the secondary visualization will be updated to show its distribu-
tion. Figure 4 depicts the secondary visualization as a bar graph
showing the distribution of all the vulnerability categories in the
catalina.loader sub-package. It shows the absolute number
of vulnerabilities in each category on its respective bar, as well as
the package name, the number of selected vulnerabilities, and the
total number of vulnerabilities (+LCOG). The colour of the bars
will match that used in the treemap—grey bars for packages and
the same colour used in the treemap for classes. In Fig. 4, the user
selected only a subset of vulnerability categories (Security, Mali-
cious code, and Performance); unselected categories are faded out
on the bar graph. Focusing on categories can be done by checking
their checkboxes, or using a shadow highlight brushing operation
on the secondary visualization (+FLUI). Brushing can be done by
tapping on the category’s bar, its name, or by finger-tracing around
them (e.g., drawing a circle). This will highlight the selected cate-
gories, and will update the linked treemap accordingly. Highlight-
ing information about the selected vulnerability categories allows
users to focus on them, while the background information helps
users maintain cognizance of the overall code quality. We note that
in some cases, a category with a particularly large number of vul-

Figure 5: Relation between CDs and four select objectives of a
CSCR tool. The figure can be read following the arrows, e.g., the
arrow from FLUI to Collaboration indicates that Fluidity supports
Collaboration.

nerabilities will occupy most of the bar, thus making it hard to see
the rest of the categories. Thus, the secondary visualization will
enable users to zoom-in/out to focus on the desired categories.

7 DISCUSSION

In this section, we reflect on the results from our evaluations to
discuss the effect of five CDs on achieving Cesar’s objectives (see
Fig. 5), and provide general recommendations for collaborative
code review tools based on the Cognitive Dimensions framework.

Fluidity (FLUI). Fluidity is useful for all four objectives of a
collaborative code review tool. A fluid interface does not compel
the user to perform many actions to fulfill a certain task, thus re-
duces disruptions to the code review workflow. In particular, with-
out fluidity, the user would be consumed in the many steps required
to perform a task, negatively affecting collaboration between team
members, and distracting them from the overall code quality and
from analyzing specific vulnerabilities. A user absorbed by the task
at hand is less likely to have discussions with their teammates that
might break their line of thought, and they might be reluctant to
redo all these steps to teach their teammate how to perform a cer-
tain task. In addition, being distracted by the steps they need to
perform takes the user’s focus off the original objective of assess-
ing the quality of the code and inspecting vulnerabilities. A poorly
fluid system would also deter users from exploring—there is only
so many times a user may be willing to go through multiple steps
to explore information. As evident by Cesar’s CW, the UI of a col-
laborative code review tool should be fluid enough to invite users to
explore the different aspects of the data presented to discover hid-
den trends, rather than settling for the most obvious explanations.

Recommendation. It is important for a code review tool to have
fluidity. The tool should act as a transparent interaction medium;
users should feel as if they are directly interacting with their code-
base, rather than the burden of learning a new code review tool.

Low Cognitive Load (LCOG). A tool that reduces the cog-
nitive load on users is valuable for collaboration and exploration.
Useful information should be available to the user throughout the
different steps taken to perform a task. Reducing the load on the
user’s working memory allows the user to be more open to discus-
sion and exploration. A tool that provides users with opportunities
for exploration without exerting too much cognitive effort is more
likely to succeed in persuading them to perform deeper analyses.

Recommendation. A code review tool should conserve the user’s
cognitive resources to the actual objective of reviewing their code-
base, determining how to secure it, and identifying critical issues.

Abstraction (ABST). Using the correct level of abstraction to
present vulnerability information supports exploration and helps the
user assess the overall quality of the codebase. Providing vulner-
ability information in an abstract form, while maintaining close-
ness of mapping as discussed below, encourages the user to explore

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

available information and invokes their analysis mindset. Addition-
ally, the difference in the approach taken by the Findbugs and Ce-
sar’s evaluators demonstrates the usefulness of abstraction in pre-
venting users from getting engrossed in the details of specific vul-
nerabilities without being mindful of the big picture.

Recommendation. A collaborative code review tool should use
abstractions to invite the user to explore available information and
to apprise the user of the overall quality of the codebase.

Closeness of Mapping (CLOS). Closeness of mapping of the
interface elements to the domain motivates users to explore infor-
mation provided by the code review tool, and concentrate on vul-
nerability details. Thus, a visualization that maintains the codebase
hierarchy familiar to the developers allows them to build on their
existing knowledge of the codebase to review their code, looking
for hidden patterns and trends. In addition, it allows them to focus
on the details of vulnerabilities, rather than deciphering how the
vulnerability information presented to them relates to their code.

Recommendation. A code review tool should maintain closeness
of representation to the domain of software development, e.g., by
maintaining the codebase hierarchy in its visualizations. Users who
are familiar with the structure of the information do not have to go
through the first steps of determining how to make sense of the pre-
sented data, and could delve right into analyzing this data utilizing
their existing knowledge.

Visibility and Juxtaposability (V IJU). This dimension sup-
ports focusing on details of specific vulnerabilities. As noted by
Cesar’s evaluators, when vulnerability information (such as its de-
scription and location in the codebase) is easily accessible to the
user without cognitive effort, the user can focus their attention on
the specifics of the vulnerability, identifying its criticality and how
to solve it. Components that are relevant to each other should be
placed side-by-side to allow the user to easily access the required
information, making comparisons and inferences.

Recommendation. Components’ visibility and their placement
juxtaposed allows users to direct their cognitive resources to in-
vestigating vulnerability details, making inferences and decisions,
rather than on finding information in disparate parts of the interface.

8 CONCLUSION

We applied a user-centered approach to address the issue of usabil-
ity of source code analyzers. Usability evaluation was two fold:
the Cognitive Dimensions (CDs) framework and Cognitive Walk-
through (CW) method. We evaluated the usability of the UI of
FindBugs, one of the most popular open source code analyzers.
To address some of FindBugs’ usability issues we designed Cesar,
which provides developers and testers with a visual analysis envi-
ronment to help them reduce risks of source code security vulner-
abilities. Cesar uses a vertical multitouch display as an interface,
and a treemap as its primary visualization element. The treemap
presents vulnerability information while maintaining the codebase
hierarchy familiar to developers. We evaluated the usability of an
initial Cesar prototype, and discussed additional potentially useful
features based on the evaluation. Finally, we presented general rec-
ommendations for designing collaborative code review tools.

ACKNOWLEDGEMENTS

Hala Assal acknowledges NSERC for her Postgraduate Scholarship
(PGS D). Sonia Chiasson acknowledges NSERC for funding her
Canada Research Chair and Discovery Grant. This work is partially
funded by NSERC SurfNet.

REFERENCES

[1] Google’s Approach to IT Security. https://static.
googleusercontent.com/media/1.9.22.221/en/
/enterprise/pdf/whygoogle/google-common-
security-whitepaper.pdf. [Accessed July-2016].

[2] K. Allendoerfer, S. Aluker, G. Panjwani, J. Proctor, D. Sturtz,
M. Vukovic, and C. Chen. Adapting the cognitive walkthrough
method to assess the usability of a knowledge domain visualization. In
IEEE Symposium on Information Visualization, INFOVIS ’05, pages
195–202, Oct.

[3] P. Anderson. Measuring the Value of Static-Analysis Tool Deploy-
ments. Security Privacy, IEEE, 10(3):40–47, May 2012.

[4] C. Anslow, S. Marshall, J. Noble, and R. Biddle. SourceVis: Collab-
orative software visualization for co-located environments. In IEEE
Working Conference on Software Visualization, VISSOFT ’13, pages
1–10, Sept 2013.

[5] N. Ayewah and W. Pugh. The Google FindBugs Fixit. In International
Symposium on Software Testing and Analysis, ISSTA ’10, pages 241–
252, New York, NY, USA, 2010.

[6] R. A. Becker and W. S. Cleveland. Brushing Scatterplots. Technomet-
rics, 29(2):127–142, 1987.

[7] A. Blackwell and T. Green. A Cognitive Dimensions questionnaire
optimised for users. In Annual Meeting of the Psychology of Pro-
gramming Interest Group, pages 137–152, 2000.

[8] A. Blackwell and T. Green. Notational systems–the cognitive di-
mensions of notations framework. In HCI Models, Theories, and
Frameworks: Toward an Interdisciplinary Science. Morgan Kauf-
mann, 2003.

[9] B. Chess and G. McGraw. Static Analysis for Security. IEEE Security
& Privacy, 2(6):76–79, 2004.

[10] W. Fang, B. P. Miller, and J. A. Kupsch. Automated Tracing and
Visualization of Software Security Structure and Properties. In IEEE
Symposium on Visualization for Cyber Security, VizSec ’12, pages 9–
16, New York, NY, USA, 2012.

[11] J. Goodall, H. Radwan, and L. Halseth. Visual Analysis of Code Secu-
rity. In IEEE Symposium on Visualization for Cyber Security, VizSec
’10, pages 46–51, New York, NY, USA, 2010.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t
software developers use static analysis tools to find bugs? In Inter-
national Conference on Software Engineering, ICSE ’13, pages 672–
681, May 2013.

[13] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. Whitehead.
Does bug prediction support human developers? Findings from a
Google case study. In International Conference on Software Engi-
neering, ICSE ’13, pages 372–381, May 2013.

[14] S. Mckenna, D. Staheli, and M. Meyer. Unlocking user-centered de-
sign methods for building cyber security visualizations. In IEEE Sym-
posium on Visualization for Cyber Security, VizSec ’15, pages 1–8,
Oct 2015.

[15] Microsoft Corp. Definition of a Security Vulnerability.
https://msdn.microsoft.com/en-us/library/
cc751383.aspx. [Accessed June-2016].

[16] Microsoft Corp. Microsoft Security Development Lifecycle. https:
//www.microsoft.com/en-us/sdl. [Accessed June-2016].

[17] J. Mifsud. 12 Effective Guidelines For Breadcrumb Usability and
SEO. http://usabilitygeek.com/12-effective-
guidelines-for-breadcrumb-usability-and-seo/.
[Accessed June-2016].

[18] S. Müller, M. Würsch, T. Fritz, and H. C. Gall. An Approach for
Collaborative Code Reviews Using Multi-touch Technology. In Inter-
national Workshop on Co-operative and Human Aspects of Software
Engineering, CHASE ’12, pages 93–99, Piscataway, NJ, USA, 2012.

[19] V. Okun, Delaitre, Aurelien, and P. E. Black. Report on the Static
Analysis Tool Exposition (SATE) IV. In NIST Special Publication
500-297. 2013.

[20] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton. Cognitive walk-
throughs: a method for theory-based evaluation of user interfaces. In-
ternational Journal of Man-Machine Studies, 36(5):741 – 773, 1992.

[21] B. Shneiderman. Tree Visualization with Tree-maps: 2-d Space-filling
Approach. ACM Trans. Graph., 11(1):92–99, Jan. 1992.

[22] I. Sommerville. Software Engineering. Pearson Education, 9 edition,
November 2011.

[23] H. Zhong and Z. Su. An Empirical Study on Real Bug Fixes. In
International Conference on Software Engineering, ICSE ’15, pages
913–923, Piscataway, NJ, USA, 2015.

2016 IEEE SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY (VIZSEC)

https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://static.googleusercontent.com/media/1.9.22.221/en//enterprise/pdf/whygoogle/google-common-security-whitepaper.pdf
https://msdn.microsoft.com/en-us/library/cc751383.aspx
https://msdn.microsoft.com/en-us/library/cc751383.aspx
https://www.microsoft.com/en-us/sdl
https://www.microsoft.com/en-us/sdl
http://usabilitygeek.com/12-effective-guidelines-for-breadcrumb-usability-and-seo/
http://usabilitygeek.com/12-effective-guidelines-for-breadcrumb-usability-and-seo/

